Skip to main content
Log in

Geochemistry, magma flow characteristics and petrogenesis of Paleoproterozoic NW–NNW trending mafic dykes from central Bastar craton, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The NW–NNW trending Paleoproterozoic (2.5–1.6 Ga) mafic dykes from Pakhanjore, Muramgaon and Gariaband–Chhura areas of central Bastar craton are medium-grained, consisting of orthopyroxene, clinopyroxene and plagioclase with ophitic texture. They represent basalt to basaltic trachyandesite composition in TAS (total alkali silica) and tholeiitic magma series in AFM diagram. On element ratio plots, the dykes exhibit fractional crystallisation of plagioclase, clinopyroxene and olivine. High Th concentrations, deviation from MORB-OIB array observed in Nb/Yb vs. Th/Yb plot, and positive Zr–Hf anomalies in multi-element spidergram support crustal contamination of the dykes. Geochemical characteristics such as affinity towards subduction-modified lithospheric mantle (SZLM) field and diagonal trend towards plume array in TiO2/Yb vs. Th/Nb diagram, support the generation of the magma from different degrees of interactions between plume and SZLM. Non-modal REE modelling implies derivation of the magma from different degrees of partial melting of spinel-garnet containing lherzolitic source. Reynolds numbers in order of 103–104 obtained from quantitative calculations of the dyke widths support turbulent ascent of the magma. Our calculations suggest while magma ascending from lower crust to upper crust, parameters such as magma flow rate (Q), heat flow (H), wall-rock melting rate (U) values change depending upon the nature of magma flow and dyke thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Anderson A T 1976 Magma mixing: Petrological process and volcanological tool; J. Volcanol. Geotherm. Res. 1 3–33.

    Article  Google Scholar 

  • Biswal T K and Sinha S 2003 Deformation history of the NW salient of the Eastern Ghats Mobile Belt, India; J. Asian Earth Sci. 22 157–169.

    Article  Google Scholar 

  • Bruce P M and Huppert H E 1989 Thermal control of basaltic fissure eruptions; Nature 342 665–667.

    Article  Google Scholar 

  • Bruce P M and Huppert H E 1990 Solidification and melting along dykes by the laminar flow of basaltic magma; In: Magma transport and storage (ed.) Ryan M P, Wiley, New York (NY), United States, pp. 87–101.

    Google Scholar 

  • Crookshank H 1963 Geology of southern Bastar and Jeypore from Bailadila range to Eastern Ghats; Geol. Surv. India Memoir 87 96–108.

    Google Scholar 

  • DePaolo D J 1981 Trace element and isotopic effects of combined wall rock assimilation and fractional crystallisation; Earth Planet. Sci. Lett. 53 189–202.

    Article  Google Scholar 

  • Ernst R E and Buchan K L 2001 Mantle plumes: Their identification through time; Geol. Soc. Am. Spec. Publ. 352 59–70.

    Google Scholar 

  • Ersoy Y and Helvaci C 2010 FC-AFC-FCA and mixing modeler: A Microsoft® Excel© spreadsheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing; Comput. Geosci. 36 383–390, https://doi.org/10.1016/j.cageo.2009.06.007.

    Article  Google Scholar 

  • Fermor L L 1909 The manganese deposits of India; Geol. Surv. India Memoir 37 1294.

    Google Scholar 

  • Fialko Y A and Rubin A M 1999 Thermal and mechanical aspects of magma emplacement in giant dike swarms; J. Geophys. Res. Solid Earth 104 23,033–23,049.

    Article  Google Scholar 

  • Fram M S and Lesher C E 1993 Geochemical constraints on mantle melting during creation of the North Atlantic basin; Nature 363 712–715, https://doi.org/10.1038/363712a0.

    Article  Google Scholar 

  • French J E, Heaman L M, Chacko T and Srivastava R K 2008 1891–1883 Ma Southern Bastar–Cuddapah mafic igneous events, India: A newly recognised large igneous province; Precamb. Res. 160 308–322, https://doi.org/10.1016/j.precamres.2007.08.005.

    Article  Google Scholar 

  • Ghosh J G 2004 3.56 Ga tonalite in the central part of the Bastar craton, India: Oldest Indian date; J. Asian Earth Sci. 23 359–364.

    Article  Google Scholar 

  • Gudmundsson A 2006 How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes; Earth-Sci. Rev. 79 1–31, https://doi.org/10.1016/j.earscirev.2006.06.006.

    Article  Google Scholar 

  • Gudmundsson A 2011 Rock fractures in geological processes; Cambridge University Press.

  • Herzberg C and Asimow P D 2015 PRIMELT 3 MEGA. XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus; Geochem. Geophys. Geosyst. 16 563–578.

    Article  Google Scholar 

  • Hirschmann M M, Ghiorso M S, Wasylenki L E, Asimow P D and Stolper E M 1998 Calculation of peridotite partial melting from thermodynamic models of minerals and melts. I. Review of methods and comparison with experiments; J. Petrol. 39 1091–1115.

    Article  Google Scholar 

  • Huang Y, Chubakov V, Mantovani F, Rudnick R L and McDonough W F 2013 A reference Earth model for the heat-producing elements and associated geoneutrino flux; Geochem. Geophys. Geosyst. 14 2003–2029.

    Article  Google Scholar 

  • Huppert H E and Sparks R S J 1985 Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust; Earth Planet. Sci. Lett. 74 371–386.

    Article  Google Scholar 

  • Irvine T N J and Baragar W R A 1971 A guide to the chemical classification of the common volcanic rocks; Can. J. Earth Sci. 8 523–548.

    Article  Google Scholar 

  • Krishna A K, Khanna T C and Mohan K R 2016 Rapid quantitative determination of major and trace elements in silicate rocks and soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry; Spectrochim. Acta Part B: Atom. Spectrosc. 122 165–171.

    Article  Google Scholar 

  • Kumar A, Hamilton M A and Halls H C 2012 A Paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, southern India; Geochem. Geophys. Geosyst. 13, https://doi.org/10.1029/2011GC003926.

  • Le Maitre R W, Streckeisen A, Zanettin B, Le Bas M J, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S and Keller J 2002 Igneous rocks: A classification and glossary of terms, recommendations of the International Union of Geological Sciences, Subcommission of the Systematics of Igneous Rocks, 2nd edn, Cambridge, U.K., New York, Cambridge University Press, 236p.

  • Lee C T A, Luffi P, Plank T, Dalton H and Leeman W P 2009 Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas; Earth Planet. Sci. Lett. 279 20–33.

    Article  Google Scholar 

  • Lesher C E and Spera F J 2015 Thermodynamic and transport properties of silicate melts and magma; In: The Encyclopedia of Volcanoes, Elsevier, pp. 113–141.

  • Liao A C Y, Shellnutt J G, Hari K R, Denyszyn S W, Vishwakarma N and Verma C B 2019 A petrogenetic relationship between 2.37 Ga boninitic dyke swarms of the Indian Shield: Evidence from the Central Bastar Craton and the NE Dharwar Craton; Gondwana Res. 69 193–211, https://doi.org/10.1016/j.gr.2018.12.007.

    Article  Google Scholar 

  • Manu Prasanth M P, Hari K R, Chalapathi Rao N V, Santosh M, Hou G, Tsunogae T and Pandit D 2019 Neoarchean suprasubduction zone magmatism in the Sonakhan greenstone belt, Bastar Craton, India: Implications for subduction initiation and melt extraction; Geol. J. 54 3980–4000.

    Article  Google Scholar 

  • Mayborn K R and Lesher C E 2004 Paleoproterozoic mafic dike swarms of northeast Laurentia: Products of plumes or ambient mantle?; Earth Planet. Sci. Lett. 225 305–317, https://doi.org/10.1016/j.epsl.2004.06.014.

    Article  Google Scholar 

  • McDonough W F and Sun S-s 1995 The composition of the Earth; Chem. Geol. 120 223–253, https://doi.org/10.1016/0009-2541(94)00140-4.

    Article  Google Scholar 

  • Mckenzie D A N and Bickle M J 1988 The volume and composition of melt generated by extension of the lithosphere; J. Petrol. 29 625–679.

    Article  Google Scholar 

  • Meert J G, Pandit M K, Pradhan V R and Kamenov G 2011 Preliminary report on the paleomagnetism of 1.88 Ga dykes from the Bastar and Dharwar cratons, peninsular India; Gondwana Res. 20 335–343, https://doi.org/10.1016/j.gr.2011.03.005.

    Article  Google Scholar 

  • Mohanty S P 2015 Palaeoproterozoic supracrustals of the Bastar Craton: Dongargarh supergroup and sausar group; Geol. Soc. London Memoir 43 151–164.

    Article  Google Scholar 

  • Mohr P A 1987 Crustal contamination in mafic sheets: A summary. Mafic dyke swarms; Geol. Assoc. Can. Spec. Paper 34 75–80.

    Google Scholar 

  • Mukherjee S, Dey A, Sanyal S, Ibanez-Mejia M, Dutta U and Sengupta P 2017 Petrology and U–Pb geochronology of zircon in a suite of charnockitic gneisses from parts of the Chotanagpur Granite Gneiss Complex (CGGC): Evidence for the reworking of a Mesoproterozoic basement during the formation of the Rodinia supercontinent; Geol. Soc. London Spec. Publ. 457 197–231.

    Article  Google Scholar 

  • Nagaraju E, Parashuramulu V, Kumar A and Sarma D S 2018 Paleomagnetism and geochronological studies on a 450 km long 2216 Ma dyke from the Dharwar craton, southern India; Phys. Earth Planet. Inter. 274 222–231.

    Article  Google Scholar 

  • Nicholls J 1988 The statistics of Pearce element diagrams and the Chayes closure problem; Contrib. Mineral. Petrol. 99 11–24, https://doi.org/10.1007/BF00399361.

    Article  Google Scholar 

  • Pandey O P, Mezger K, Söderlund U, Upadhyay D, Srivastava R K, Gautam G C and Ernst R E 2020 Geochronology, whole-rock geochemistry and Sr–Nd isotopes of the Bhanupratappur mafic dyke swarm: Evidence for a common Paleoproterozoic LIP event at 2.37–2.36 Ga in the Bastar and Dharwar cratons; Precamb. Res. 347 105853, https://doi.org/10.1016/j.precamres.2020.105853.

    Article  Google Scholar 

  • Parashuramulu V, Shankar R, Sarma D S, Nagaraju E and Babu N R 2021 Baddeleyite Pb–Pb geochronology and paleomagnetic poles for ~1.89–1.86 Ga mafic intrusions from the Dharwar craton, India, and their paleogeographic implications; Tectonophys. 805 228789.

    Article  Google Scholar 

  • Patel R, Shankar R, Sarma D S and Panda A 2021 Geochemistry and petrogenesis of tholeiitic dykes from the Chotanagpur Gneissic Complex, eastern India; J. Earth Syst. Sci. 130 1–24, https://doi.org/10.1007/s12040-021-01646-7.

    Article  Google Scholar 

  • Pearce T H 1968 A contribution to the theory of variation diagrams; Contrib. Mineral. Petrol. 19 142–157.

    Article  Google Scholar 

  • Pearce J A 2008 Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust; Lithos 100 14–48, https://doi.org/10.1016/j.lithos.2007.06.016.

    Article  Google Scholar 

  • Pearce J A, Ernst R E, Peate D W and Rogers C 2021 LIP printing: Use of immobile element proxies to characterise Large Igneous Provinces in the geologic record; Lithos 392–393 106068, https://doi.org/10.1016/j.lithos.2021.106068.

    Article  Google Scholar 

  • Pisarevsky S A, Biswal T K, Wang X-C, De Waele B, Ernst R, Söderlund U, Tait J A, Ratre K, Singh Y K and Cleve M 2013 Palaeomagnetic, geochronological and geochemical study of Mesoproterozoic Lakhna Dykes in the Bastar Craton, India: Implications for the Mesoproterozoic supercontinent; Lithos 174 125–143.

    Article  Google Scholar 

  • Polat A and Hofmann A W 2003 Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland; Precamb. Res. 3–4 197–218, https://doi.org/10.1016/S0301-9268(03)00095-0.

    Article  Google Scholar 

  • Rajesh H M, Mukhopadhyay J, Beukes N J, Gutzmer J, Belyanin G A and Armstrong R A 2009 Evidence for an early Archaean granite from Bastar craton, India; J. Geol. Soc. London 166 193–196.

    Article  Google Scholar 

  • Ramachandra H M, Mishra V P and Deshmukh S S 1995 Mafic dyke swarms of peninsular India; Geol. Surv. India Memoir 33 183–207.

    Google Scholar 

  • Ramakrishnan M 1990 Crustal development in southern Bastar central Indian craton; Geol. Surv. India Spec. Publ. 28 44–66.

    Google Scholar 

  • Rao N V C, Burgess R, Lehmann B, Mainkar D, Pande S K, Hari K R and Bodhankar N 2011 40Ar/39Ar ages of mafic dykes from the Mesoproterozoic Chhattisgarh basin, Bastar craton, Central India: Implication for the origin and spatial extent of the Deccan Large Igneous Province; Lithos 125 994–1005.

    Article  Google Scholar 

  • Ratre K, De Waele B, Biswal T K and Sinha S 2010 SHRIMP geochronology for the 1450 Ma Lakhna dyke swarm: Its implication for the presence of Eoarchaean crust in the Bastar Craton and 1450–517 Ma depositional age for Purana basin (Khariar), Eastern Indian Peninsula; J. Asian Earth Sci. 39 565–577.

    Article  Google Scholar 

  • Rudnick R L and Fountain D M 1995 Nature and composition of the continental crust: A lower crustal perspective; Rev. Geophys. 33 267–309.

    Article  Google Scholar 

  • Rudnick R L and Gao S 2003 Composition of the continental crust; In: Treatise on Geochemistry (eds) Heinrich D Holland and Karl K Turekian, Elsevier, Pergamon 3 1–64.

  • Russell J K and Nicholls J 1988 Analysis of petrologic hypotheses with Pearce element ratios; Contrib. Mineral. Petrol. 99 25–35, https://doi.org/10.1007/BF00399362.

    Article  Google Scholar 

  • Samal A K, Srivastava R K, Ernst R E and Söderlund U 2019 Mapping and naming of distinct Neoarchean–Mesoproterozoic mafic dyke swarms of the Indian Shield using GoogleTM Earth images and ArcGISTM and their possible association to Large Igneous Provinces: Current status and future prospects; In: Dyke swarms of the world – A modern perspective, Springer, pp. 335–390.

  • Santosh M, Tsunogae T, Yang C X, Han Y S, Hari K R, Prasanth M P M and Uthup S 2020 The Bastar craton, central India: A window to Archean–Paleoproterozoic crustal evolution; Gondwana Res. 79 157–184, https://doi.org/10.1016/j.gr.2019.09.012.

    Article  Google Scholar 

  • Sarkar G, Corfu F, Paul D K, McNaughton N J, Gupta S N and Bishui P K 1993 Early Archean crust in Bastar Craton, Central India – A geochemical and isotopic study; Precamb. Res. 62 127–137, https://doi.org/10.1016/0301-9268(93)90097-L.

    Article  Google Scholar 

  • Sarma D S, Parashuramulu V, Santosh M, Nagaraju E and Babu N R 2020 Pb–Pb baddeleyite ages of mafic dyke swarms from the Dharwar Craton: Implications for Paleoproterozoic LIPs and diamond potential of mantle keel; Geosci. Frontiers 11 2127–2139, https://doi.org/10.1016/j.gsf.2020.05.014.

    Article  Google Scholar 

  • Satyanarayanan M, Balaram V, Sawant S S, Subramanyam K S V, Krishna G V, Dasaram B and Manikyamba C 2018 Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry; Atom. Spectrosc. 39 1–15.

    Article  Google Scholar 

  • Seymour K S and Stephen Kumarapeli P 1995 Geochemistry of the Grenville Dyke Swarm: Role of plume-source mantle in magma genesis; Contrib. Mineral. Petrol. 120 29–41, https://doi.org/10.1007/BF00311006.

    Article  Google Scholar 

  • Shankar R, Vijayagopal B and Kumar A 2014 Precise Pb–Pb baddeleyite ages of 1765 Ma for a Singhbhum ‘newer dolerite’ dyke swarm; Curr. Sci. 106 1306–1310.

    Google Scholar 

  • Shankar R, Sarma D S, Babu N R and Parashuramulu V 2018 Paleomagnetic study of 1765 Ma dyke swarm from the Singhbhum Craton: Implications to the paleogeography of India; J. Asian Earth Sci. 157 235–244.

    Article  Google Scholar 

  • Shaw D M 1970 Trace element fractionation during anatexis; Geochim. Cosmochim. Acta 34 237–243, https://doi.org/10.1016/0016-7037(70)90009-8.

    Article  Google Scholar 

  • Shellnutt J G, Hari K R, Liao A C Y, Denyszyn S W and Vishwakarma N 2018 A 1.88 Ga giant radiating mafic dyke swarm across southern India and Western Australia; Precamb. Res. 308 58–74, https://doi.org/10.1016/j.precamres.2018.01.021.

    Article  Google Scholar 

  • Shellnutt J G, Hari K R, Liao A C Y, Denyszyn S W, Vishwakarma N and Deshmukh S D 2019 Petrogenesis of the 1.85 Ga Sonakhan mafic dyke swarm, Bastar Craton, India; Lithos 334–335 88–101, https://doi.org/10.1016/j.lithos.2019.03.015.

    Article  Google Scholar 

  • Srivastava R K 2006a Precambrian mafic dyke swarms from the Central Indian Bastar craton: Temporal evolution of the subcontinental mantle; In: Dyke swarms – Time markers crustal evol., pp. 147–159.

  • Srivastava R K 2006b Geochemistry and petrogenesis of Neoarchaean high-Mg low-Ti mafic igneous rocks in an intracratonic setting, Central India craton: Evidence for boninite magmatism; Geochem. J. 40 15–31.

    Article  Google Scholar 

  • Srivastava R K 2008 Global Intracratonic Boninite–Norite magmatism during the Neoarchean–Paleoproterozoic: Evidence from the Central Indian Bastar Craton; Int. Geol. Rev. 50 61–74.

    Article  Google Scholar 

  • Srivastava R K and Gautam G C 2009 Precambrian mafic magmatism in the Bastar craton, central Indian; J. Geol. Soc. India 73 52–72, https://doi.org/10.1007/s12594-009-0004-1.

    Article  Google Scholar 

  • Srivastava R K and Singh R K 2003 Geochemistry of high-Mg mafic dykes from the Bastar Craton: Evidence of Late Archaean boninite-like rocks in an intracratonic setting; Curr. Sci. 85 808–811.

    Google Scholar 

  • Srivastava R K and Singh R K 2004 Trace element geochemistry and genesis of Precambrian sub-alkaline mafic dikes from the central Indian craton: Evidence for mantle metasomatism; J. Asian Earth Sci. 23 373–389.

    Article  Google Scholar 

  • Srivastava R K, Jayananda M, Gautam G C, Gireesh V and Samal A K 2014 Geochemistry of an ENE–WSW to NE–SW trending ~2.37 Ga mafic dyke swarm of the eastern Dharwar craton, India: Does it represent a single magmatic event?; Chemie der Erde 74 251–265, https://doi.org/10.1016/j.chemer.2013.07.007.

    Article  Google Scholar 

  • Srivastava R K, Pimentel M M and Gautam G C 2016 Nd-isotope and geochemistry of an early Palaeoproterozoic high-Si high-Mg boninite–norite suite of rocks in the southern Bastar craton, central India: Petrogenesis and tectonic significance; Int. Geol. Rev. 58 1596–1615.

    Article  Google Scholar 

  • Srivastava R K, Söderlund U, Ernst R E and Gautam G C 2021 A Ca. 2.25 Ga mafic dyke swarm discovered in the Bastar craton, Central India: Implications for a widespread plume-generated Large Igneous Province (LIP) in the Indian shield; Precamb. Res. 360 106232, https://doi.org/10.1016/j.precamres.2021.106232.

    Article  Google Scholar 

  • Sun S S and McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; Geol. Soc. London, Spec. Publ. 42 313–345.

    Article  Google Scholar 

  • Tarney J 1992 Geochemistry and significance of mafic dyke swarms in the Proterozoic; Dev. Precamb. Geol. 10 151–179, https://doi.org/10.1016/S0166-2635(08)70118-X.

    Article  Google Scholar 

  • Tomlinson K Y and Condie K C 2001 Archean mantle plumes: Evidence from greenstone belt geochemistry; Geol. Soc. Am. Spec. Paper 352 341–358.

    Google Scholar 

  • Yadav P, Sarma D S and Parashuramulu V 2020 Pb–Pb baddeleyite ages of mafic dykes from the Western Dharwar Craton, southern India: A window into 2.21–2.18 Ga global mafic magmatism; J. Asian Earth Sci. 191 104221.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr V M Tiwari, Director, CSIR-National Geophysical Research Institute, Hyderabad, for his permission to publish these results. The UGC-JRF supported this work to AP and RP, and the MLP funds were utilised to conduct fieldwork. Drs. M Ram Mohan and Ravi Shankar are thanked for their suggestions and fruitful discussions during the work. Drs. M Satyanarayanan, A Keshav Krishna and S Sawant are acknowledged for their guidance in the geochemical analytical work. This study forms a part of the doctoral thesis of AP. This is CSIR-NGRI contribution no. NGRI/Lib/2022/Pub-76.

Author information

Authors and Affiliations

Authors

Contributions

Aurovinda Panda: Carried out the fieldwork, sample preparation, data interpretation and initial and final draft preparation. D Srinivasa Sarma: Guided the analytical work, contributed to the write-up of the final version, and overall supervised the work. Rahul Patel: Contributed to fieldwork; data interpretation and write-up of the initial and final versions.

Corresponding author

Correspondence to D Srinivasa Sarma.

Additional information

Communicated by N V Chalapathi Rao

Supplementary materials pertaining to this article are available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, A., Sarma, D.S. & Patel, R. Geochemistry, magma flow characteristics and petrogenesis of Paleoproterozoic NW–NNW trending mafic dykes from central Bastar craton, India. J Earth Syst Sci 132, 1 (2023). https://doi.org/10.1007/s12040-022-02007-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-02007-8

Keywords

Navigation