Skip to main content
Log in

Structural evolution of the Kef and Sers grabens (Tunisian Atlas) during the Late Mesozoic–Quaternary episode: Role of inherited faults and new constraint on the collapsing mode

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Through a multidisciplinary approach based on geological mapping, field observations, paleostress analysis and some seismic data, this paper is aimed to better constrain the Upper Cretaceous–Quaternary structural evolution of the NW–SE trending el Kef and Sers grabens (north-central Tunisia), and to explain the coexistence of extensional and compressional structures in this region. We suggest that grabens are mechanically linked by the Boulifa E–W trending dextral shear zone. Results reveal a major NE–SW extensional phase during the Upper Cretaceous–Paleocene time, as proved by NW–SE and E–W trending synsedimentary normal faults. The examination of the geological cross-section along the salt structures (e.g., Jebel Debadib) enables us to notice that several zones of the el Kef area have been marked by bald areas. These highs have been formed after Triassic vertical movement and they were responsible for the absence of some series of the Upper Cretaceous and Paleocene. On the other hand, results document a NW–SE trending compressional phase, during early Eocene, that affected the study area. Extension with main NE–SW direction took place during the early-middle Miocene, giving raise the el Kef and Sers grabens opening. However, from late Miocene until Quaternary, the study area was affected by two major contractional events with NW–SE to NNW–SSE directed shortening. The first one gave rise to the reactivation of the pre-existing normal faults and NE–SW trending folds and thrust structures. The compression event still remains active during the Quaternary (post-Villafranchian). During both Neogene shortening events, the paleostress analysis reveals a NE–SW trending extension in regional compressional phase. We interpret this extensional tectonic event as a local effect due to the perturbation of the principal stress axis, guided by the continental collision between the African and Eurasian plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Ait Brahim L, Chotin P, Hinaj S, Abdelouafi A, El Adraoui A, Nakcha C, Dhont D, Charroud M, Sossey Alaoui F, Amrhar M, Bouaza A, Tabyaoui H and Chaouni A 2002 Paleostress evolution in the Moroccan African margin from Triassic to Present; Tectonophys. 357 187–205.

  • Amiri A, Chaqui A, Hamdi Nasr I, Inoubli M, Ben Ayed N and Tlig S 2011 Role of pre-existing faults in the geodynamic evolution of Northern Tunisia, insights from gravity data from the Medjerda valley; Tectonophys. 506 1–10.

    Article  Google Scholar 

  • Amri Z, Naji C, Masrouhi A and Bellier O 2020 Interconnection salt diapir-allochthonous salt sheet in northern Tunisia: The Lansarine-Baoula case study; J. Afr. Earth Sci., https://doi.org/10.1016/j.jafrearsci.

  • Arfaoui M, Reid A and Inoubli M H 2015 Evidence for a new regional NW–SE fault and crustal structure in Tunisia derived from gravity data; EAGE, Geophys. Prospect. 63 1272–1283.

    Article  Google Scholar 

  • Azizi R and Chihi L 2016 Superposed folding in the Neogene series of the northeastern Tunisia: Precision of the upper Miocene compression and geodynamic significance; Int. J. Earth Sci. (Geol. Rundsch.) 106 1905–1918.

  • Azizi R, Ali K and Lassaâd C 2015 Neogene tectonic evolution in Northern Tunisia: Case of Chaouat-Mannouba area. Paleoseismic event associated; Arab. J. Geosci. 8(10) 8911–8925.

  • Balti H, Hachani F, Kadri A and Gasmi M 2016 Subsurface structure of Teboursouk and El Krib plains (dome zone, northern Tunisia) by gravity analysis; J. Afr. Earth Sci. 119 78–93.

    Article  Google Scholar 

  • Belguith Y, Geoffroy L, Rigane A, Gourmelen C and Ben Dhia H 2011 Neogene extensional deformation and related stress regimes in central Tunisia; Tectonophys. 509 198–207.

    Article  Google Scholar 

  • Ben Ayed N 1993 Evolution tectonique de l’avant-pays de la chaine alpine de Tunisie de début du Mésozoïque à l’Actuel; Thesis Es Sciences, Univ. Paris Sud, France, 286p.

  • Billi A, Faccena C, Bellier O, Minelli L, Neri G, Piromallo C, Presti D, Scrocca D and Serpelloni E 2011 Recent tectonic reorganization of the Nubia–Eurasia convergent boundary heading for the closure of the western Mediterranean; Bull. Soc. Geol. Fr. 182 279–303.

    Article  Google Scholar 

  • Booth-Rea G, Gqidi S, Melki F, Marzougui W, Azanon J M, Zargouni F, Galvé J P and Pérez-Pena J V 2018 Late Miocene extensional collapse of Northern Tunisia; Tectonics 37 1626–1647, https://doi.org/10.1029/2017TC004846.

    Article  Google Scholar 

  • Bouaziz S, Barrier E, Soussi M, Turki M M and Zouari H 2002 Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record; Tectonophys. 357 227–253.

    Article  Google Scholar 

  • Boughdiri M, Cordey F, Sallouhi H, Maalaoui K, Masrouhi A and Soussi M 2007 Jurassic radiolarian-bearing series of Tunisa: Biostratigraphy and significance to western Tethys correlations; Swiss. J. Geosci. 100 431–441.

    Article  Google Scholar 

  • Bousquet J C and Philip H 1986 Neotectonic of the Tyrrhenian Arc and Apennines: An example of evolution from island to collisional stages; In: The origin of Arcs (ed.) Wezel C F, Elsevier, Amsterdam, pp. 305–326.

    Chapter  Google Scholar 

  • Bracene R and Frizon Delamotte D 2002 The origin of intraplate deformation in the Atlas system of western and central Algeria: From Jurassic rifting to Cenozoic–Quaternary inversion; Tectonophys. 357 207–226.

    Article  Google Scholar 

  • Briki H, Ahmadi R, Smida R and Farhat R 2018 Structural evolution and tectonic style of the Tunisia central Atlas: Role of inherited faults in compressive tectonics (Ghoualguia anticline); Tectonophysics, https://doi.org/10.1016/j.tecto.2018.03.004.

    Article  Google Scholar 

  • Carminati E, Wortel M J R, Spakman W and Sabadini R 1998 The role of slab detachment processes in the opening of the western–central Mediterranean basins: Some geological and geophysical evidence; Earth Planet. Sci. 160 651–665.

    Article  Google Scholar 

  • Catalano S, De Guidi G, Romagnoli G, Torrisi G and Tortorici L 2008 The migration of plate boundarie in SE Sicily: Influence on the large-scale kinematic model of the African promontory in southern Italy; Tectonophys. 449 41–62.

    Article  Google Scholar 

  • Chihi L and Philip H 1998 Les fossés de l’extrémité orientale du Maghreb (Tunisie et Algérie orientale): Tectonique Moi-Plio-Quaternaire et implication dans l’évolution géodynamique récente de la Méditerranée occidentale; Notes Serv; Géol. Tunisie. 64 103–116.

    Google Scholar 

  • Chikhaoui M, Jallouli C, Turki M M, Soussi M and Braham A 2002 L’affleurement triasique du Debadib–Ben Gasseur (Nord-Ouest de la Tunisie): diapir enraciné à épanchements latéraux dans la mer Albienne, replissé au cours des phases de compression tertiaires; C.R. Geosci. 334 1129–1133.

    Article  Google Scholar 

  • Delvaux D and Seperner B 2003 Stress tensor inversion from fault kinematic indicators and focal mechanism data: The TENSOR program; In: New insights into structural interpretation and modeling (ed.) Nieuwland D, Soc. Geol. London, pp. 75–100.

    Google Scholar 

  • Delvaux D, Moey R, Stapel G, Petit C, Levi K, Miroshnichenko K, Ruzhich V and San’kov V, 1997 Paleostress reconstruction and geodynamics of the Baikal region, Central Asia, Part 2: Cenozoic rifting; Tectonophys. 282 1–38.

    Article  Google Scholar 

  • Dhahri F, Tanfous D, Gabtni H and Boukadi N 2015 Structural and geodynamic study in Central Tunisia using field and geophysical data: New structural interpretation of the N-S axis and associated Atlassic structures; Int. J. Earth Sci. 104 1819–1835.

    Article  Google Scholar 

  • Dlala M 2002 La tectonique distensive synsédimentaire d’âge campanien maastrichtien en Tunisie: Implication sur l’évolution géodynamique de la marge nord-africaine; C.R. Acad. Sci. 334 135–140.

    Google Scholar 

  • Domzig A, Gaullier V, Giresse P, Pauc H, Déverchère J and Yelles K 2009 Deposition processes from echo-character mapping along the western Algerian margin (Oran-Tenes), western Mediterranean; Mar. Pet. Geol. 26 673–694.

    Article  Google Scholar 

  • El Ghali A, Bobier C and Ben Ayed N 2003 Rôle du système de failles E-W dans l’évolution géodynamique de l’avant-pays de la chaine Alpine de Tunisie. Exemple de l’accident de Sbiba-Cherichira en Tunisie centrale; Bull. Soc. Géol. Fr. 174(4) 373–381.

  • Faccena C, Becker T W, Lucente F P, Jolivet L and Rossetti F 2001 History of subduction and back-arc extension in the Central Mediterranean; Int. J. Geophys. 145 809–820.

    Article  Google Scholar 

  • Frifita N, Mickus K and Zargouni F 2018 Gravity contribution to the geological study of grabens in the northwest region of Tunisia including the Kef Basin region; J. Afr. Earth Sci., https://doi.org/10.1016/j.jafrearsci.0010.

  • Frizon de Lamotte D, Leturmy P, Missenard Y, Khomsi S, Ruiz Gn Saddiqi O, Guillocheau F and Michard A 2009 Mesozoic and Cenozoic vertical movements in the atlas system (Algeria, Morroc, Tunisia): An overview; Tectonophys. 475 9–28.

    Article  Google Scholar 

  • Garcia E, Danobeitia J, Verge J, Bartolome R and Cordoba D 2003 Crustal architecture and tectonic evolution of the Gulf of Cadiz (SW Iberian margin) at the convergence of the Eurasian and African plates; Tectonics 22 1033–1058.

    Google Scholar 

  • Gharbi R A, Chihi L, Hammami M, Soumaya A and Kadri A 2005 Manifestations tectono-diapiriques synsédimentaires et polyphasées d’âge Crétacé supérieur Quaternaire dans la région de Zag Et Tir (Tunisie centre-nord); C.R. Geosci. 337 1293–1300.

    Article  Google Scholar 

  • Gomez F, Beauchamp W and Barazangi M 2000 Role of the Atlas Mountains (northwest Africa) within the Africa-Eurasian plate-boundary zone; Geology 28 775–778, https://doi.org/10.1130/0091-761328<775ROTAMN<2.0CO;2.

    Article  Google Scholar 

  • Hamdi M S, Soumaya A, Kadri A, Ben Ayed N, Braham A and Shimi N 2019 Evolution of E-W strike-slip fault networks, the northwestern foreland of Tunisia; J. Afr. Earth Sci., https://doi.org/10.1016/j.jafrearsc.02.024.

  • Hatira N, Smati A, Mansouri A, Perthuisot V and Rouvier H 2000 Le trias à caractère extrusif de la zone des dômes: Exemple de la structure de Débadib-Ben Gasseur (Tunisie septentrionale); Bull. Soc. Geol. Fr. 171 319–326.

    Article  Google Scholar 

  • Henry J, Blant G, Tempere C L and Hervouet M 1976 Méthodes modernes de géologie de terrain_2b Manuel d‘analyse structurale, Traitement de données‘. Chambre synclinale de la recherche et de la production du pétrole et du gaz naturel; Edition Technip, Paris, 70p.

  • Hinsbergen D J, Vissers R L and Spakman W 2014 Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation; Tectonics 33 393–419.

    Article  Google Scholar 

  • Hlaiem A 1999 Halokinesis and structural evolution of the major features in eastern and southern Tunisian Atlas; Tectonophys. 306 79–95.

    Article  Google Scholar 

  • Jallouli C, Chikhaoui M, Braham A, Turki M M, Michkus K and Benass R 2005 Evidence for Triassic salt domes in the Tunisian Atlas from gravity and geological data; Tectonophys. 396 209–225.

    Article  Google Scholar 

  • Jallouli C, Mogren S, Mickus K and Turki M M 2013 Evidence for an east–west regional gravity trend in northern Tunisia: Insight into the structural evolution of northern Tunisian Atlas; Tectonophys. 608 149–160.

    Article  Google Scholar 

  • Jolivet L, Augier R and Faccenna C 2008 Subduction, convergence and the mode of backarc extension in the Mediterranean region; Bull. Soc. Geol. Fr. 179 525–550.

    Article  Google Scholar 

  • Kadri A, Essid M and Merzoud G 2015 ‘Kasserine Island’ boundaries variations during the upper cretaceous-eocene (Central Tunisia); J. Afr. Earth Sci. 111 244–257.

    Article  Google Scholar 

  • Khomsi S, Ghazi M, Jemia B, Frizon D, Lamotte D, Mahressi C, Echihi O and Mezni R 2009 An overview of the Late Cretaceous-Eocene positive inversions and Oligocene–Miocene subsidence events in the tectonic agenda of the Maghrebian Atlas system; Tectonophys. 475 38–58.

    Article  Google Scholar 

  • Leprêtre R, De Lamotte D F, Combier V, Gimeno-Vives O, Mohn G and Eschard R 2018 The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the Southern Tethys margin BSGF; Earth Sci. Bull. 189 1–35.

    Google Scholar 

  • Mahmoudi N, Ferhi F, Houla Y, Azizi R and Chihi L 2019 New insights on the tectonic evolution of the Miocene gap grabens of Sers–Siliana (Tunisian Atlas) during Neogene to Quaternary: Contribution of chronology of the regional tectonic events; J. Earth. Syst. Sci., https://doi.org/10.1007/s12040-019-1220-8.

  • Martinez C, Chikhaoui M, Truillet R, Ouali J and Creuzot G 1991 Le contexte géodynamique de la distension albo-aptienne en Tunisie septentrionale et centrale: Structuration éocrétacé de l’Atlas tunisie; Eclog. Geol. Helvetiae 84 61–82.

    Google Scholar 

  • Masrouhi A, Bellier O and Koyi H 2014 Geometry and structural evolution of Lorbeus diapir, northwestern Tunisia: Polyphase diapirisme of the North African inverted passive margin; Int. J. Earth Sci., https://doi.org/10.1007/s00531-013-0992-3.

    Article  Google Scholar 

  • Masrouhi A, Gharbi M, Bellier O and Youssef M B 2019 The Southern Atlas Front in Tunisia and its foreland basin: Structural style and regional-scale deformation; Tectonophys. 764 1–24.

    Article  Google Scholar 

  • Medaouri M, Déverchère J, Graindorge R, Bracene R, Badji R, Ouabadi A, Karim Y and Bendiab F 2014 The transition from Alboran basins (western Mediterranean Sea): Chronostratigraphy, deep crustal structure and tectonic evolution at the rear of a narrow slab rollback system; J. Geodyn. 77 186–205.

    Article  Google Scholar 

  • Meghraoui M and Pondrelli S 2012 Active faulting and transpression tectonics along the plate boundary in North Africa; Ann. Geophys. 55 955–967.

    Google Scholar 

  • Melki F, Zouaghi T, Harrab S, Casas Sainz A, Bédir M and Zargouni F 2011 Structuring and evolution of Neogene transcurrent basins in the Tellian foreland domain, north-eastern Tunisia; J. Geodyn. 52 57–69.

    Article  Google Scholar 

  • Naji C, Masrouhi A, Amri Z, Gharbi M and Bellier O 2018 Cretaceous paleomargin tilted blocks geometry in northern Tunisia: Stratigraphic consideration and fault kinematic analysis; Arab. J. Geosci. 11 583.

    Article  Google Scholar 

  • Nocquet J M and Calais E 2004 Geodetic measurements of crustal deformation in the western Mediterranean and Europe; Pure Appl. Geophys. J. 161 661–681.

    Article  Google Scholar 

  • Perhtuisot V, Aoudjehane M, Bouzenoune A, Hatira N, Laater E, Mansouri A, Rouvier H and Smati A 1998 Les corps triasiques des Monts du Mellegue sont-ils des diapirs ou des glacier de Sel’’?; Bull. Soc. Geol. Fr. 169 53–61.

    Google Scholar 

  • Philip H, Anderieux J, Dlala M, Chihi L and Ben Ayed N 1986 Evolution tectonique Mio-Plio-Quaternaire du Fossé de Kasserine (Tunisie centrale): Implication sur l’évolution géodynamique récente de la Tunisie; Bull. Soc. Geol. Fr. 4 559–568.

    Article  Google Scholar 

  • Piqué A, Brahim L A, Ouali R A, Amrhar M, Charroud M, Gourmelen C, Laville E, Rkhiss F and Tricart P 1998 Evolution structurale des domaines atlasiques du Maghreb au Méso-Cénozoique; le rôle des structures héritées dans la déformation du domaine atlasique de l’Afrique du Nord; Bull. Soc. Geol. Fr. 6 797–810.

    Google Scholar 

  • Piqué A, Tricart P, Guiraud R, Laville E, Bouaziz S, Amrhar M and Ouali R 2002 The Mesozoic-Cenozoic Atlas belt (North Africa): An overview; Geodin. Acta 15 185–208.

    Google Scholar 

  • Roure F, Casero P and Addoum B 2012 Alpine inversion of the North African margin and delamination of its continental lithosphere; Tectonics 31 1–28.

    Article  Google Scholar 

  • Soumaya A, Ben Ayed N, Rajabi M, Meghraoui M, Delvaux D, Kadri A, Zielgler M, Maouche S and Braham A 2018 Active faulting geometry and stress pattern near complex Strike-Slip Systems along the Maghreb region: Construction on active convergence in the Western Mediterranean; Tectonics 37 3148–3173.

    Article  Google Scholar 

  • Tanfous-Amri D, Bédir M, Soussi M, Azaiez H, Zitouni L, Inoubli M H and Ben Boubaker K 2005 Halocinèse précoce associé au rifting jurassique dans l’Atlas central de Tunisie (région de Majoura-El Hfay); C.R. Geosci. 337 703–711.

    Article  Google Scholar 

  • Vergés J and Sàbat F 1999 Constraints on the Neogene Mediterranean kinematic evolution along a 100 km transect from Iberia to Africa; Geol. Soc. Spec. Publ. London 156 63–80.

    Article  Google Scholar 

  • Zouaghi T, Bédir M, Ayed-Khaled A, Lazzez M, Soua M, Amri A and Inoubli M H 2013 Autochthounous versus allochthounous Upper Triassic evaporates in the Sbiba graben, central Tunisia; J. Struct. Geol. 52 163–182.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the ETAP (Tunisian National Oil Company) for delivering subsurface data. Editor and reviewers are acknowledged for their insightful comments and corrections. The corresponding author would like to dedicate this paper to the memory of his deceased supervisor Prof Chihi Lassaâd.

Author information

Authors and Affiliations

Authors

Contributions

N Mahmloudi and R Azizi conceived the idea and were in charge of overall direction and planning of this work. N Mahmoudi performed field and seismic data for this study. R Azizi contributed to the geological mapping of this paper. O Abidi contributed to the interpretation and discussion of the subsurface data. N Ghannem helped in the processing and interpretation of the main structures of this study and contributed to the discussion of the final paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahmoudi Noureddine.

Additional information

Communicated by Saibal Gupta

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noureddine, M., Ramzi, A., Oussama, A. et al. Structural evolution of the Kef and Sers grabens (Tunisian Atlas) during the Late Mesozoic–Quaternary episode: Role of inherited faults and new constraint on the collapsing mode. J Earth Syst Sci 131, 233 (2022). https://doi.org/10.1007/s12040-022-01974-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-01974-2

Keywords

Navigation