Skip to main content
Log in

δ13C and 87Sr/86Sr signatures from carbonates of the Morar Formation, Gwalior Group: Implications towards depositional setting and Paleoproterozoic seawater chemistry

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The Paleoproterozoic Gwalior Group of central India holds carbonates at two stratigraphic levels within the Morar Formation, exposed at the Bela-Ki-Bauri and Utilla sections. Limestones are micritic/sucrosic in grain size and dominantly calcitic in mineralogy. Preservation of primary sedimentary structures, poor correlation between δ13C and δ18O values and a narrow range in isotopic values suggest preservation of near-pristine sea water signature. δ13C values for Bela-Ki-Bauri and Utilla carbonates vary between –1.1 and –2.8‰ and 0.5 to 0.1‰, respectively, with an average 2.37‰ depletion in value in Bela-Ki-Bauri carbonates. Without any significant difference in total organic carbon content between the two studied sections, the depletion in δ13C value within Bela-Ki-Bauri carbonates is correlated with influx of 12C enriched meteoric water at a shallow marine setting dominated by stromatolites and algal laminites. The 87Sr/86Sr values obtained from Gwalior carbonates (0.707403–0.711283) are well consistent with Proterozoic carbonates and a value of 0.707403 is considered composition of Gwalior seawater.

Research highlights

  • For the first time Strontium isotopes data are reported from Paleoproterozoic Gwalior Basin.

  • 87Sr/86Sr values from Gwalior carbonates are well consistent with other Proterozoic carbonates.

  • Positive shift in δ13C in the Gwalior carbonate helps to infer the paleo bathymetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Author statement

PPP: Fieldwork, collection of samples, data analysis, visualisation of the manuscript and writing, conceptualisation of figures and drawings.

References

  • Absar N, Raza M, Roy M, Naqvi S and Roy A K 2009 Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkhand Craton, Central India: Records from geochemistry of clastic sediments of 1.9 Ga Gwalior Group; Precamb. Res. 168(3–4) 313–329, https://doi.org/10.1016/j.precamres.2008.11.001.

  • Banner J L and Kaufman J 1994 The isotopic record of ocean chemistry and diagenesis preserved in non-luminescent brachiopods from Mississippian carbonate rocks, Illinois and Missouri; Geol. Soc. Am. Bull. 106(8) 1074–1082, https://doi.org/10.1130/0016-7606(1994)106%3c1074:TIROOC%3e2.3.CO;2.

    Article  Google Scholar 

  • Beeunas M A and Knauth L P 1985 Preserved stable isotopic signature of subaerial diagenesis in the 1.2-by Mescal Limestone, central Arizona: Implications for the timing and development of a terrestrial plant cover; Geol. Soc. Am. Bull. 96(6) 737–745, https://doi.org/10.1130/0016-7606(1985)96<737:PSISOS>2.0.CO;2.

  • Bekker A, Karhu J A, Eriksson K A and Kaufman A J 2003 Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: Tectonic forcing of biogeochemical change?; Precamb. Res. 120(3–4) 279–325.

    Article  Google Scholar 

  • Bekker A, Slack J F, Planavsky N, Krapez B, Hofmann A, Konhauser K O and Rouxel O J 2010 Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes; Econ. Geol. 105(3) 467–508, https://doi.org/10.2113/gsecongeo.105.3.467.

    Article  Google Scholar 

  • Bekker A, Holland H D, Wang P L, Rumble D III, Stein H J, Hannah J L, Coetzee L L and Beukes H J 2004 Dating the rise of atmospheric oxygen; Nature 427 117–120, https://doi.org/10.1038/nature02260.

    Article  Google Scholar 

  • Bekker A, Holmden C, Beukes N J, Kenig F, Eglinton B and Patterson W P 2008 Fractionation between inorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbon isotope excursion; Earth Planet. Sci. Lett. 271(1–4) 278–291, https://doi.org/10.1016/j.epsl.2008.04.021.

  • Beukes N J, Dorland H, Gutzmer J, Nedachi M and Ohmoto H 2002 Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic; Geology 30(6) 491–494, https://doi.org/10.1130/0091-7613(2002)030%3c0491:TLLOLA%3e2.0.CO;2.

    Article  Google Scholar 

  • Burke W H, Denison R E, Hetherington E A, Koepnick R B, Nelson H F and Otto J B 1982 Variation of seawater 87Sr/86Sr throughout Phanerozoic time; Geology 10(10) 516–519, https://doi.org/10.1130/0091-7613(1982)10%3c516:VOSSTP%3e2.0.CO;2.

    Article  Google Scholar 

  • Chakraborty P P 2004 Facies architecture and sequence development in a Neoproterozoic carbonate ramp: Lakheri Limestone Member, Vindhyan Supergroup, central India; Precamb. Res. 132(1–2) 29–53, https://doi.org/10.1016/j.precamres.2004.02.004.

    Article  Google Scholar 

  • Chakraborty P P, Mukhopadhyay J, Paul P P, Banerjee D M and Bera M K 2020 Early atmosphere and hydrosphere oxygenation: Clues from Precambrian paleosols and chemical sedimentary records of India. Episodes 43(1) 175–186, https://doi.org/10.18814/epiiugs/2020/020011.

  • Chakraborty P P, Sarkar A, Bhattacharya S K and Sanyal P 2002 Isotopic and sedimentological clues to productivity change in Late Riphean Sea: A case study from two intracratonic basins of India; J. Earth Syst. Sci. 111(4) 379–390, https://doi.org/10.1007/BF02702051.

    Article  Google Scholar 

  • Crawford A R and Compston W 1970 The Age of the Vindhyan System of Peninsular India; Q. J. Geol. Soc. London 125 135–371, https://doi.org/10.1144/gsjgs.125.1.0351.

  • Daines S J, Mills B J and Lenton T M 2017 Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon; Nat. Commun. 8(14379) 1–11, https://doi.org/10.1038/ncomms14379.

    Article  Google Scholar 

  • Deb M, Thorpe R and Krstic D 2002 Hindoli Group of rocks in the eastern fringe of the Aravalli-Delhi orogenic belt-Archean secondary greenstone belt or Proterozoic supracrustals?; Gondwana Res. 5(4) 879–883, https://doi.org/10.1016/S1342-937X(05)70922-9.

    Article  Google Scholar 

  • Fairchild I J, Marshall J D and Bertrand-Sarfati J 1990 Stratigraphic shifts in carbon isotopes from Proterozoic stromatolitic carbonates (Mauritania): Influences of primary mineralogy and diagenesis; Am. J. Sci. 290(A) 46–79.

  • Govindaraju K 1994 Computation of working values and sample description for 38; Geostan. Newsl. 18(S1) 1–158, https://doi.org/10.1046/j.13652494.1998.53202081.x-i1.

    Article  Google Scholar 

  • Hudson J D and Anderson T F 1989 Ocean temperatures and isotopic compositions through time; Earth Environ. Sci. Trans. Roy. Soc. Edinb. 80(3–4) 183–192, https://doi.org/10.1017/S0263593300028625.

    Article  Google Scholar 

  • Irwin H, Curtis C and Coleman M 1977 Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments; Nature 269 209–213, https://doi.org/10.1038/269209a0.

    Article  Google Scholar 

  • James N P and Choquette P W 1983 Diagenesis 6. Limestones – the sea floor diagenetic environment; Geosci. Canada 10(4)162–179, https://journals.lib.unb.ca/index.php/GC/article/view/3353.

  • Karhu J A and Holland H D 1996 Carbon isotopes and the rise of atmospheric oxygen; Geology 24(10) 867–870.

    Article  Google Scholar 

  • Kaufman A J and Knoll A H 1995 Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications; Precamb. Res. 73(1–4) 27–49, https://doi.org/10.1016/0301-9268(94)00070-8.

    Article  Google Scholar 

  • Kumar B, Sharma S D, Sreenivas B, Dayal A M, Rao M N, Dubey N and Chawla B R 2002 Carbon, oxygen and strontium isotope geochemistry of Proterozoic carbonate rocks of the Vindhyan Basin, central India; Precamb. Res. 113 43–63, https://doi.org/10.1016/S0301-9268(01)00199-1.

    Article  Google Scholar 

  • Kuznetsov A B, Melezhik V A, Gorokhov I M, Melnikov N N, Konstantinova G V, Kutyavin E P and Turchenko T L 2010 Sr isotopic composition of Paleoproterozoic 13C-rich carbonate rocks: The Tulomozero Formation, SE Fennoscandian Shield; Precamb. Res. 182(4) 300–312, https://doi.org/10.1016/j.precamres.2010.05.006.

    Article  Google Scholar 

  • Maheshwari A, Sial A N, Gaucher C, Bossi J, Bekker A, Ferreira V P and Romano A W 2010 Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: A review of occurrences in Brazil, India, and Uruguay; Precamb. Res. 182(4) 274–299, https://doi.org/10.1016/j.precamres.2010.06.017.

    Article  Google Scholar 

  • Mallikharjuna Rao J, Poornachandra Rao G V S, Widdowson M and Kelley S P 2005 Evolution of Proterozoic mafic dyke swarms of the Bundelkhand Granite Massif, Central India; Curr. Sci. 88(3) 502–506, https://www.jstor.org/stable/24110222.

  • Martin A P, Condon D J, Prave A R, Melezhik V A, Lepland A and Fallick A E 2013 Dating the termination of the Palaeoproterozoic Lomagundi-Jatuli carbon isotopic event in the North Transfennoscandian Greenstone Belt; Precamb. Res. 224 160–168, https://doi.org/10.1016/j.precamres.2012.09.010.

    Article  Google Scholar 

  • Nagarajan R, Roy P D, Jonathan M P, Lozano R, Kessler F L and Prasanna M V2014 Geochemistry of Neogene sedimentary rocks from Borneo Basin, East Malaysia: Paleo-weathering, provenance and tectonic setting. Geochem. 74(1) 139–146, https://doi.org/10.1016/j.chemer.2013.04.003.

  • Narbonne G M, Kaufman A J and Knoll A H 1994 Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: Implications for Neoproterozoic correlations and the early evolution of animals; Geol. Soc. Am. Bull. 106(10) 1281–1292, https://doi.org/10.1130/0016-7606(1994)106%3c1281:ICABOT%3e2.3.CO;2.

    Article  Google Scholar 

  • Oehlert A M and Swart P K 2014 Interpreting carbonate and organic carbon isotope covariance in the sedimentary record; Nat. Commun. 5(4672) 1–7, https://doi.org/10.1038/ncomms5672.

    Article  Google Scholar 

  • Paul P P, Chakraborty P P, Shiraishi F, Das K, Kamei A and Bhattacharya S 2020 Clue on ocean redox condition from trace element and rare earth element (REE) composition of iron formation and carbonate rocks from the late Paleoproterozoic Morar Formation, Gwalior Group, central India; J. Mineral. Petrol. Sci. 115(2) 175–191, https://doi.org/10.2465/jmps.191011.

    Article  Google Scholar 

  • Pelechaty S M and James N P 1991 Dolomitised middle Proterozoic calcretes, Bathurst Inlet, Northwest Territories, Canada; J. Sedim. Res. 61(6) 988–1001.

    Google Scholar 

  • Pierre C and Rouchy J M 1988 Carbonate replacements after sulfate evaporites in the middle Miocene of Egypt; J. Sedim. Res. 58(3) 446–456, https://doi.org/10.1306/212F8DB9-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  • Ramakrishnan M and Vaidyanadhan R 2010 Geology of India; Geological Society of India, Bangalore 1 461p.

    Google Scholar 

  • Ray J S, Veizer J and Davis W J 2003 C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: Age, diagenesis, correlations and implications for global events; Precamb. Res. 121(1–2) 103–140, https://doi.org/10.1016/S0301-9268(02)00223-1.

    Article  Google Scholar 

  • Retallack G J and Mao X 2019 Paleoproterozoic (ca. 1.9 Ga) megascopic life on land in Western Australia; Palaeogeogr. Palaeoclimatol. Palaeoecol. 532 109266, https://doi.org/10.1016/j.palaeo.2019.109266.

  • Roy A K, Absar N, Kumar S, Sharma, R, Rai S D and Parihar P S 2005 Some observation on lithostratigraphy and uranium potential of Gwalior Group of rocks, Gwalior District, MP; In: Proceedings International Conference on Precambrian Crustal growth and Tectonism, Bundelkhand University, Jhansi.

  • Samom J D, Ahmad T and Choudhary A 2018 Geochemical and Sm–Nd isotopic constraints on the petrogenesis and tectonic setting of the Proterozoic mafic magmatism of the Gwalior Basin, central India: the influence of Large Igneous Provinces on Proterozoic crustal evolution; Geol. Soc. London Spec. Publ. 463(1) 243–268, https://doi.org/10.1144/SP463.10.

  • Sarkar A, Chakraborty P P, Mishra B, Bera M K, Sanyal P and Paul S 2010 Mesoproterozoic sulphidic ocean, delayed oxygenation and evolution of early life: Sulphur isotope clues from Indian Proterozoic basins; Geol. Mag. 147(2) 206–218, https://doi.org/10.1017/S0016756809990380.

    Article  Google Scholar 

  • Sarkar S, Chakraborty P P and Bose P K 1996 Proterozoic Lakheri Limestone, Central India: Facies, paleogeography and physiography; In: Recent Advances in Vindhyan Geology (ed.) Bhattacharya A, Geol. Soc. India Memoir 36 5–25.

  • Sarkar S, Chakraborty P P, Bhattacharya S K and Banerjee S 1998 C 12-enrichment along intraformational unconformities within Proterozoic Bhander Limestone, Son Valley, India and its implication; Carbonates Evaporates 13(1) 108–114, https://doi.org/10.1007/BF03175440.

    Article  Google Scholar 

  • Schidlowski M, Eichmann R and Junge C E 1976 Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia; Geochim. Cosmochim. Acta 40(4) 449–455, https://doi.org/10.1016/0016-7037(76)90010-7.

    Article  Google Scholar 

  • Schidlowski M, Hayes J M and Kaplan I R 1983 Isotopic inferences of ancient biochemistries: Carbon, sulfur, hydrogen and nitrogen; In: Earth’s earliest biosphere (ed.) Schopf J W, Princeton University Press, New Jersey, pp. 149–186.

    Google Scholar 

  • Sehidlowski M, Eichmann R and Jung C E 1975 Precambrian sedimentary carbonates: Carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget; Precamb. Res. 2(1) 1–69, https://doi.org/10.1016/0301-9268(75)90018-2.

    Article  Google Scholar 

  • Shackleton N J 1974 Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial; In: Colloques Internationaux Du C.N.R.S. N.219. Les Methodes Quantitatives D'etude Des Variations Du Climax Au Cours Du Pleistocene.

  • Shields G and Veizer J 2002 Precambrian marine carbonate isotope database: Version 1.1; Geophys. Geosyst. 3(6) 12, https://doi.org/10.1029/2001GC000266.

  • Sreedhar A K, Balakrishnan S, Pappu S and Akhilesh K 2008 Clay mineralogical studies of sediments and strontium isotope analyses on calcretes at the prehistoric site of Attirampakkam, Tamilnadu; Curr. Sci. 94(6) 779–786, https://www.jstor.org/stable/24100633.

  • Strauss H, Des Marais D J, Hayes J M and Summons R E 1992 The carbon-isotopic record; In: The Proterozoic biosphere: A multidisciplinary study (eds) Schopf J W and Klein C, Cambridge University Press, New York, pp. 117–127.

    Google Scholar 

  • Tobin K J and Walker K R 1994 Meteoric diagenesis below a submerged platform: Implications for δ13C compositions prior to pre-vascular plant evolution, Middle Ordovician, Alabama, USA; Sedim. Geol. 90(1–2) 95–111, https://doi.org/10.1016/0037-0738(94)90019-1.

    Article  Google Scholar 

  • Veizer J and Compston W 1976 87Sr/86Sr in Precambrian carbonates as an index of crustal evolution; Geochim. Cosmochim. Acta 40(8) 905–914, https://doi.org/10.1016/0016-7037(76)90139-3.

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carder G A F, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawallek F, Podlaha O G and Strauss H 1999 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic sea-water; Chem. Geol. 161(1–3) 59–88, https://doi.org/10.1016/S0009-2541(99)00081-9.

    Article  Google Scholar 

  • Veizer J, Clayton R N and Hinton R W1992a Geochemistry of Precambrian carbonates. 4: Early Paleoproterozoic (2.25 ± 0.25 Ga) seawater, Geochim. Cosmochim. Acta 56(3) 875–885, https://doi.org/10.1016/0016-7037(92)90033-F.

  • Veizer J, Plumb K A, Clayton R N, Hinton R W and Grotzinger J P 1992b Geochemistry of Precambrian carbonates: V. Late Paleoproterozoic seawater; Geochim. Cosmochim. Acta 56(6) 2487–2501, https://doi.org/10.1016/0016-7037(92)90204-V.

  • Veizer J 1989 Strontium isotopes in seawater through time; Ann. Rev. Earth Planet. Sci. 17 141–167, https://doi.org/10.1146/annurev.ea.17.050189.001041.

    Article  Google Scholar 

  • Whittaker S G, Sami T T, Kyser T K and James N P 1998 Petrogenesis of 1.9 Ga limestones and dolostones and their record of Paleoproterozoic environments; Precamb. Res. 90(3–4) 187–202, https://doi.org/10.1016/S0301-9268(98)00048-5.

Download references

Acknowledgements

P P Paul thanks the Council of Scientific and Industrial Research, New Delhi, for financial support in the form of SRA (Scientist Pool) No. 13(9182-A/2021-Pool) and the University Grants Commission in the form of a major Project. Thanks are due to Dr S Balakrishnan, Department of Earth Sciences, Pondicherry University and Dr M K Bera, Department of Geology and Geophysics, IIT Kharagpur for providing laboratory facilities. Dr P P Chakraborty, University of Delhi, is specially thanked for his mentorship throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritam Paritosh Paul.

Additional information

Communicated by Santanu Banerjee

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, P.P. δ13C and 87Sr/86Sr signatures from carbonates of the Morar Formation, Gwalior Group: Implications towards depositional setting and Paleoproterozoic seawater chemistry. J Earth Syst Sci 131, 222 (2022). https://doi.org/10.1007/s12040-022-01970-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-01970-6

Keywords

Navigation