Skip to main content

Advertisement

Log in

Stress drop variations of triggered earthquakes at Koyna–Warna, western India: A case study

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

We have implemented the spectral ratio technique (SRT) for the estimation of source parameters of local earthquakes (ML 0.5–4.0) of the Koyna–Warna region, western India, a well-known site of artificial water reservoir triggered seismicity. The SRT uses the concept of empirical Green’s function and it takes care of the path and site effects; thus, it contributes to the optimal estimates of the source parameters. Here, we have calculated the corner frequencies and stress drops of a new earthquake sequence that occurred during 1 May–25 June 2017 and compared these estimates with the stress drop behaviour of the existing seismicity cluster (ES) in the region. We also tested the dependency of stress drop with increasing seismic moment of these earthquakes. A total of 689 P-wave spectra of earthquakes recorded by a short-period borehole and a broad-band surface seismic network are utilized for this purpose. We found that the corner frequency varies from 1 to 25 Hz and stress drops vary from 0.01 to 14 MPa for earthquakes of both the clusters. Interestingly, the depth dependence of median stress drop of the new earthquake cluster is slightly different from the ES. The combined trend of median stress drop from both the clusters follows a constant stress drop scaling as widely accepted for natural tectonic earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  • Anderson J G and Hough S E 1984 A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies; Bull. Seismol. Soc. Am. 74(5) 1969–1993.

    Google Scholar 

  • Abercrombie R E 1995 Earthquake source scaling relationships from –1 to 5 ML using seismograms recorded at 2.5 km depth; J. Geophys. Res. 100 24,015–24,036, https://doi.org/10.1029/95JB02397.

    Article  Google Scholar 

  • Abercrombie R E and Rice J R 2005 Small earthquake scaling revisited: Can it constrain slip weakening?; Geophys. J. Int. 162 406–424.

    Article  Google Scholar 

  • Allmann B P and Shearer P M 2007 Spatial and temporal stress drop variations in small earthquakes near Parkfield California; J. Geophys. Res. 112 B04305, https://doi.org/10.1029/2006JB004395.

    Article  Google Scholar 

  • Abercrombie R E 2013 Comparison of direct and coda wave stress drop measurements for the Wells, Nevada, earthquake sequence; J. Geophys. Res. 118 1458–1470, https://doi.org/10.1029/2012JB009638.

    Article  Google Scholar 

  • Bakun W H and Bufe C G 1975 Shear-wave attenuation along the San Andreas fault zone in Central California; Bull. Seismol. Soc. Am. 65(2) 439–459.

  • Brune J 1970 Tectonic stress and the spectra of seismic shear waves from earthquakes; J. Geophys. Res. 75 4997–5009, https://doi.org/10.1029/JB075i026p04997.

    Article  Google Scholar 

  • Boatwright J 1980 A spectral theory for circular seismic sources; simple estimates of source dimension, dynamic stress drop and radiated seismic energy; Bull. Seismol. Soc. Am. 70 1–27.

    Article  Google Scholar 

  • Boatwright J 1994 Regional propagation characteristics and source parameters of earthquakes in northeastern North America; Bull. Seismol. Soc. Am. 84 1–15.

    Article  Google Scholar 

  • Baltay A, Ide S, Prieto G and Beroza G 2011 Variability in earthquake stress drop and apparent stress; Geophys. Res. Lett. 38 L06303, https://doi.org/10.1029/2011GL046698.

    Article  Google Scholar 

  • Baltay A S, Hanks T C and Beroza G C 2013 Stable stress drop measurements and their variability: Implications for ground-motion prediction; Bull. Seismol. Soc. Am. 103(1), https://doi.org/10.1785/0120120161.

    Article  Google Scholar 

  • Byerlee J 1978 Friction of rocks; Pure Appl. Geophys. 116 615–626.

  • Chen X and Shearer P M 2013 California foreshock sequences suggest aseismic triggering process; Geophys. Res. Lett. 40 2602–2607, https://doi.org/10.1002/grl.50444.

    Article  Google Scholar 

  • Cotton F, Archuleta R and Causse M 2013 What is the sigma of the stress drop?; Seismol. Res. Lett. 84 42–48, https://doi.org/10.1785/0220120087.

    Article  Google Scholar 

  • Clerc F, Harrington R M, Liu Y and Gu Y J 2016 Stress drop estimates and hypocenter relocations of induced seismicity near Crooked Lake Alberta; Geophys. Res. Lett. 43 6942–6951, https://doi.org/10.1002/2016GL069800.

    Article  Google Scholar 

  • Chen X and McGuire J J 2016 Measurement of earthquake source parameters in the Mendocino triple junction using a dense OBS array: Implications for fault strength variations; Earth Planet Sci. Lett. 453 276–287.

    Article  Google Scholar 

  • Fehler M and Phillips W S 1991 Simultaneous inversion for Q and source parameters of microearthquakes accompanying hydraulic fracturing in granitic rock; Bull. Seismol. Soc. Am. 81 553–575.

    Article  Google Scholar 

  • Fletcher J B 1982 A comparison between the tectonic stress measured in-situ and stress parameters from induced seismicity at Monticello reservoir, South Carolina; J. Geophys. Res. 87 6931–6944.

  • Gupta H K, Arora K, Rao N P, Roy S, Tiwari V M, Patro P K, Satyanarayana H V S, Shashidhar D, Mahato C R, Srinivas K N S S S et al. 2017 Investigations of continued reservoir triggered seismicity at Koyna, India; Geol. Soc. London, Spec. Publ. 445(1) 151–188.

  • Hardebeck J L and Aron A 2009 Earthquake stress drops and inferred fault strength on the Hayward Fault, east San Francisco Bay, California; Bull. Seismol. Soc. Am. 99 1801–1814.

    Article  Google Scholar 

  • Hartzell S 1978 Earthquake aftershocks as Green’s functions; Geophys. Res. Lett. 5 1–4.

    Article  Google Scholar 

  • Hubbert M K and Rubey W W 1959 Role of fluid pressure in mechanics of over thrust faulting; Bull. Geol. Soc. Am. 70 115–166.

  • Hutchings L and Wu F 1990 Empirical Green’s functions from small earthquakes: Waveform study of locally recorded aftershocks of the San Fernando earthquake; J. Geophys. Res. 95 1187–1214.

    Article  Google Scholar 

  • Hough S E, Seeber L, Lerner-Lam A, Armbruster G and Guo H 1991 Empirical Green’s function analysis of Loma Prieta aftershocks; Bull. Seismol. Soc. Am. 81 1737–1753.

    Google Scholar 

  • Hough S E 1997 Empirical Green’s function analysis: taking the next step; J. Geophys. Res. 102 5369–5384.

    Article  Google Scholar 

  • Hough S E 2014 Shaking from injection-induced earthquakes in the central and eastern United States; Bull. Seismol. Soc. Am. 104(5) 2619–2626, https://doi.org/10.1785/0120140099.

    Article  Google Scholar 

  • Ide S and Beroza G C 2001 Does apparent stress vary with earthquake size?; Geophys Res Lett. 28 3349–3352.

    Article  Google Scholar 

  • Ide S, Beroza G C, Prejean S G and Ellsworth W L 2003 Apparent break in earthquake scaling due to path and site effects on deep borehole recordings; J. Geophys. Res. 108 B52271, https://doi.org/10.1029/2001JB001617.

    Article  Google Scholar 

  • Kanamori H and Anderson D 1975 Theoretical basis of some empirical relations in seismology; Bull. Seismol. Soc. Am. 65(5) 1073–1095.

    Google Scholar 

  • Ko Y T, Kuo B Y and Hung S H 2012 Robust determination of earthquake source parameters and mantle attenuation; J. Geophys. Res. 117 B04304, https://doi.org/10.1029/2011JB008759.

    Article  Google Scholar 

  • Kaneko Y and Shearer P M 2014 Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture; Geophys. J. Int. 197(2) 1002–1015, https://doi.org/10.1093/gji/ggu030.

    Article  Google Scholar 

  • Li Y, Doll C Jr and Toksöz M N 1995 Source characterization and fault plane determination for Mb Lg = 1.2 to 4.4 earthquakes in the Charlevoix Seismic Zone, Quebec; Canada; Bull. Seismol. Soc. Am. 85 1604–1621.

    Article  Google Scholar 

  • Madariaga R 1976 Dynamics of an expanding circular crack; Bull. Seismol. Soc. Am. 66 639–666.

    Article  Google Scholar 

  • Mandal P, Rastogi B K and Sarma C S P 1998 Source parameters of Koyna earthquakes, India; Bull. Seismol. Soc. Am. 88 833–842.

    Google Scholar 

  • Mueller C S 1985 Source pulse enhancement by deconvolution of an empirical Green’s function; Geophys. Res. Lett. 12 33–36.

    Article  Google Scholar 

  • Mori J, Abercrombie R E and Kanamori H 2003 Stress drops and radiated energies of aftershocks of the 1994 Northridge, California, earthquake; J. Geophys. Res. 108(B11) 2545, https://doi.org/10.1029/2001JB000474.

    Article  Google Scholar 

  • Moyer P A, Boettcher M S, McGuire J J and Collins J A 2018 Spatial and temporal variations in earthquake stress drop on Gofar Transform Fault, East Pacific rise: Implications for fault strength; J. Geophys. Res: Solid Earth 123 7722–7740, https://doi.org/10.1029/2018JB015942.

    Article  Google Scholar 

  • Park J, Lindberg C R and Vernon F L 1987 Multitaper spectral analysis of high-frequency seismograms; J. Geophys. Res. 92 12,675–12,684, https://doi.org/10.1029/JB092iB12p12675.

    Article  Google Scholar 

  • Prieto G A, Shearer P M, Vernon F L and Kilb D 2004 Earthquake source scaling and self-similarity estimation from stacking P and S spectra; J. Geophys. Res. 109 B08310, https://doi.org/10.1029/2004JB003084.

    Article  Google Scholar 

  • Prieto G A, Parker R L, Vernon F L, Shearer P M and Thomson D J 2006 Uncertainties in earthquake source spectrum estimation using empirical Green functions, in Earthquakes: Radiated Energy and the Physics of Faulting; Geophys. Monogr. Ser. 170 69–74, AGU, Washington D.C., https://doi.org/10.1029/170GM08.

  • Prieto G A, Parker R L and Vernon F L 2009 A Fortran 90 library for multitaper spectrum analysis; C. R. Geosci. 35 1701–1710, https://doi.org/10.1016/j.cageo.2008.06.007.

    Article  Google Scholar 

  • Rao N P and Shashidhar D 2016 Periodic variation of stress field in the Koyna-Warna reservoir triggered seismicity zone inferred from focal mechanism studies; Tectonophys. 679 29–40.

    Article  Google Scholar 

  • Shashidhar D, Rao N P and Gupta H K 2011 Waveform inversion of broadband data of local earthquakes in Koyna-Warna region, western India; Geophys. J. Int. 185 292–304.

    Article  Google Scholar 

  • Shashidhar D, Satyanaryana H V S, Mahato C R, Mallika K, Rao N P and Gupta H K 2016 Borehole network at Koyna India; Seismol. Res. Lett. 87 661–667.

    Article  Google Scholar 

  • Shashidhar D, Mallika K, Gahalaut K, Mahato C R and Satyanarayana H V S 2019 A new earthquake sequence at Koyna-Warna, India and its implication for migration of the reservoir triggered seismicity; Bull. Seismol. Soc. Am. 109 827–831.

    Article  Google Scholar 

  • Shearer P M, Prieto G A and Hauksson E 2006 Comprehensive analysis of earthquake source spectra in Southern California; J. Geophys. Res. 111 B06303, https://doi.org/10.1029/2005JB003979.

    Article  Google Scholar 

  • Sibson R H 1984 Roughness at the base of the seismogenic zone: Contributing factors; J. Geophys. Res. 89 5791–5799.

    Article  Google Scholar 

  • Sonley E and Abercrombie R E 2006 Effects of methods of attenuation correction on source parameter determination; In: Earthquakes: Radiated energy and the physics of faulting (eds) Abercrombie R E, McGarr A, Kanamori H and Di Toro G, AGU, Washington, DC, Geophys. Monogr. Ser. 170 91–97.

  • Tomic J, Abercrombie R E and do Nascimento A F 2009 Source parameters and rupture velocity of small M≤2.1 reservoir induced earthquakes; Geophys. J. Int., https://doi.org/10.1111/j.1365-246X.2009.04233.

    Article  Google Scholar 

  • Thomson D J 1982 Spectrum estimation and harmonic analysis; Proc. IEEE 70 1055–1096.

    Article  Google Scholar 

  • Viegas G M, Abercrombie R E and Kim W Y 2010 The 2002 M5 Au Sable Forks, NY, earthquake sequence: Source scaling relationships and energy budget; J. Geophys. Res. 115 B07310, https://doi.org/10.1029/2009JB006799.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Director, CSIR-NGRI Dr V M Tiwari for his kind support and encouragement. Data used in this study are from networks operating by CSIR-NGRI, Hyderabad. The project is funded by the Ministry of Earth Sciences (MoES), Govt. of India. We are thankful to Prof Harsh K Gupta for the helpful discussions. The first author expresses thanks to the Council of Scientific and Industrial Research (CSIR) for the SRF fellowship. He also expresses sincere thanks to Mark Zic for his generous co-operation during inversion process of computation. Python open-source language has been used for developing the programs. Plots are generated using Generic Mapping Tool (Wessel and Smith 1995). The manuscript has Ref No. NGRI/Lib/2021/Pub-64.

Author information

Authors and Affiliations

Authors

Contributions

CR Mahato: Conceptualization, generating codes, creating maps, writing original draft, review and editing. D Shashidhar: Conceptualization, supervision, reviewing and resources.

Corresponding author

Correspondence to C R Mahato.

Additional information

Communicated by Anand Joshi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahato, C.R., Shashidhar, D. Stress drop variations of triggered earthquakes at Koyna–Warna, western India: A case study. J Earth Syst Sci 131, 106 (2022). https://doi.org/10.1007/s12040-022-01859-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-01859-4

Keywords

Navigation