Skip to main content

High-pressure polymorphs of olivine and silica in Kamargaon (L6) chondrite by laser micro-Raman and XRD studies

Abstract

We present here the composition and spectroscopic studies on the Kamargaon (L6) chondrite using laser micro-Raman spectroscopic and powder X-ray diffraction techniques. Both powder XRD and micro-Raman studies reveal the unambiguous presence of high-pressure polymorphs of silica (stishovite), traces of ringwoodite and wadsleyite (high-pressure phase of olivine) in Kamargaon (L6) ordinary chondrite. The presence of wadsleyite along with ringwoodite and stishovite suggests a minimum post-shock pressure and temperature conditions of this meteorite should be 14–15 GPa and 1400–1500°C as the ringwoodite is known to coexist with wadsleyite at ~18 GPa and ~1800 K at the boundary of wadsleyite-ringwoodite transition.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  • Agarwal V, Parthasarathy G, Sisodia M S and Bhandari N 2014 Fall, mineralogy and chemistry of Nathdwara H6 chondrite; Geosci. Front. 5 413–417.

    Google Scholar 

  • Agee C B 1998 Phase transformations and seismic structure in the upper mantle and transition zone; In: Ultra-high pressure mineralogy: Physics and chemistry of the Earth’s deep interior (ed.) Hemley R J, Rev. Mineral. 37 165–203.

  • Andrault D, Fiquet G, Guyot F and Hanfland M 1998 Pressure-induced landau-type transition in stishovite; Science 282 720–724.

    Google Scholar 

  • Aoudjehane H C, Jambon A, Reynard B and Blanc P 2005 Silica as a shock index in shergottites: A cathodoluminescence study; Meteor. Planet. Sci. 40 967–979.

    Google Scholar 

  • Bauer J F 1979 Experimental shock metamorphism of mono- and polycrystalline olivine – A comparative study; 10th LPSC, pp. 2573–2596.

  • Bhandari N, Murty S V S, Shukla P N, Mahajan R R, Shukla A D, Suthar K M, Parthasarathy G and Paltiwal B S 2005 Bhawad LL6 Chondrite: Chemistry, petrology, noble gases, nuclear tracks and cosmogenic radionuclides; Meteor. Planet. Sci. 40 1015–1022.

    Google Scholar 

  • Bhandari N, Murty S V S, Shukla P N, Mahajan R R, Shukla A D, Lashkari G, Sisodia M S, Tripati R R, Parthasarathy G, Verma H C and Franchi I A 2008 Ararki (L5) chondrite: First meteorite find in Thar desert of India; Meteor. Planet. Sci. 43 761–770.

    Google Scholar 

  • Bhandari N, Murty S V S, Mahajan R R, Parthasarathy G, Shukla P N, Sisodia M S and Rai V K 2009 Kaprada (L5/6) Chondrite: Chemistry, petrography, noble gases, and nuclear tracks; Planet Space Sci. 57 2048–2052.

    Google Scholar 

  • Bindi L, Yao N, Lin C, Hollister L S, MacPherson G J, Poirier G R, Andronicos C L, Distler V V, Eddy M P, Kostin A, Kryachko V, Steinhardt W M and Yudovskaya M 2014 Steinhardtite, a new body-centered cubic allotropic form of aluminum from the Khatyrka CV3 carbonaceous chondrite; Am. Mineral. 99 2433–2436.

    Google Scholar 

  • Binns R A 1967 Stony meteorites bearing maskelynite; Nature 18 1111–1112.

    Google Scholar 

  • Bischoff A 2002 Discovery of purple-blue ringwoodite within shock veins of an LL6 ordinary chondrite from Northwest Africa; 33rd LPSC abstract #1264.

  • Boyer H, Smith D C, Chopin C and Lasnier B 1985 Raman microprobe (RMP) determinations of natural and synthetic coesite; Phys. Chem. Miner. 12 45–48.

    Google Scholar 

  • Chandra U, Parthasarathy G, Shekar N V C and Sahu P C 2013 X-ray diffraction, Mossbauer spectroscopic and electrical resisitivity studies on Lohawat meteorite under high-pressure up to 9 GPa; Chemie Der Erde 73 197–203.

    Google Scholar 

  • Chandra U, Pandey K K, Parthasarathy G and Sharma S M 2016 High-pressure investigations on Piplia Kalan eucrite meteorite using in-situ X-ray diffraction and 57Fe Mössbauer spectroscopic technique up to 16 GPa; Geosci. Front. 7 265–271.

    Google Scholar 

  • Chandra U, Srihari V, Pandey K K and Parthasarathy G 2018 Pressure-induced phase transition and residual stress studies on a meteorite fall at Nathdwara, India; Proc. Indian Nat. Sci. Acad. 84 641–655.

    Google Scholar 

  • Chen M, Sharp T G, El Goresy A, Wopenka B and Xie X 1996 The majorite-pyrope + magnesiowüstite assemblage: Constraints on the history of shock veins in chondrites; Science 271 1570–1573.

    Google Scholar 

  • Chen M, Xiao W and Xie X 2010 Coesite and quartz characteristic of crystallization from shock-produced silica melt in the Xiuyan crater; Earth Planet. Sci. Lett. 297 306–314.

    Google Scholar 

  • Chen M, Yin F, Li X, Xie X, Xiao W and Tan D 2013 Natural occurrence of reidite in the Xiuyan crater of China; Meteor. Planet. Sci. 48 796–805.

    Google Scholar 

  • Dhingra D, Bhandari N, Shukla P N, Murty S V S, Mahajan R R, Ballabh G M, Lashkari G, Shukla A D and Parthasarathy G 2004 Spectacular fall of the Kenrapara H5 chondrite; Meteor. Planet. Sci. 39 A121–A132.

    Google Scholar 

  • Dubrovinsky L S, Saxena S K, Lazor P, Ahuja R, Erikson O, Wills J M and Johansson B 1997 Experimental and theoretical identification of a new high-pressure phase of silica; Nature 388 362–365.

    Google Scholar 

  • Durben D J, McMillan P F and Wolf G H 1993 Raman study of high-pressure behaviour of forsterite (Mg2SiO4) crystal and glass; Am. Mineral. 78 1141–1148.

    Google Scholar 

  • Fei Y, Mao H, Shu J, Parthasarathy G, Bassett W A and Ko J 1992 Simultaneous high-P, high-T X-ray diffraction study of β–(Mg, Fe)2SiO4 to 26 GPa and 900 K; J. Geophys. Res. Solid Earth (1978–2012) 97 4489–4495.

    Google Scholar 

  • Feng L, Lin Y, Hu S, Xu L and Miao B 2011 Estimation compositions of natural ringwoodite in the heavily shocked Grove Mountains 052049 meteorite from Raman spectra; Am. Mineral. 96 1480–1489.

    Google Scholar 

  • Ferroir T, Beck P, Van de Moortèle B, Bohn M, Reynard B, Simionovici A, El Goresy A and Gillet P 2008 Akimotoite in the Tenham meteorite: Crystal chemistry and high-pressure transformation mechanisms; Earth Planet. Sci. Lett. 275 26–31.

    Google Scholar 

  • Gillet P and Andree L 1990 High-temperature Raman spectroscopy of SiO2 and GeO2 polymorphs: Anharmonicity and thermodynamic properties at high-temperatures; J. Geophys. Res. B 95 21,635–21,655.

    Google Scholar 

  • Gillet P, Barrat J A, Beck P B, Marty B, Greenwood R C, Franchi I A, Bohn M and Cotton J 2005 Petrology, geochemistry, and cosmic-ray exposer age of Iherzolite shergottite Northwest Africa 1950; Meteor. Planet. Sci. 40 1175–1184.

    Google Scholar 

  • Gillet P, Chen M, Dubrovinsky L and El Goresy A 2000a Natural NaAlSi3O8-hollandite in the shocked Sixiangkou meteorite; Science 287 1633–1636.

    Google Scholar 

  • Gillet P, Daniel I, Guyot F, Matas J and Chervin J C 2000b A thermodynamic model for MgSiO3-perovskite derived from pressure, temperature and volume dependence of the Raman mode frequencies; Phys. Earth Planet. Int. 117 361–384.

    Google Scholar 

  • Grimsditch M, Popova S, Brazhkin V V and Voloshin R N 1994 Temperature-induced amorphization of SiO2 stishovite; Phys. Rev. B 50 12,984–12,986.

    Google Scholar 

  • Hemley R J 1987 Pressure dependence of Raman spectra of SiO2 polymorphs: A quartz, coesite and stishovite; In: High-pressure research in mineral physics (eds) Manghnani M H and Syono Y, Terra Scientific 347–360, https://doi.org/10.1029/GM039p0347.

  • Heymann D and Cellucci T A 1988 Raman spectra of shocked minerals. 1: Olivine; Meteoritics 23 353–357.

    Google Scholar 

  • Hogrefe A, Rubie D C, Sharp T G and Seifert F 1994 Metastability of enstatite in deep subducting lithosphere; Nature 372 351–353.

    Google Scholar 

  • Hollister L S, Bindi L, Yao N, Poirier G R, Andronicos C L, MacPherson G J, Lin C, Distler V V, Eddy M P, Kostin A, Kryachko V, Steinhardt W M, Yudovskaya M, Eiler J M, Guan Y, Clarke J J and Steinhardt P J 2014 Impact-induced shock and the formation of natural quasicrystals in the early solar system; Nat. Commun. 5 4040.

    Google Scholar 

  • Katsura T and Ito E 1989 The system Mg2SiO4–Fe2SiO4 at high pressures and temperature: Precise determination of stabilities of olivine, modified spinel and spinel; J. Geophys. Res. 94 15,663–15,670.

    Google Scholar 

  • Kimura M, Chen M, Yoshida Y, El Goresy A and Ohtani E 2003 Backtransformation of high-pressure phases in a shock melt vein of an H-chondrite during atmospheric passage: Implications for the survival of high-pressure phases after decompression; Earth Planet. Sci. Lett. 217 141–150.

    Google Scholar 

  • Kimura M, Suzuki A, Kondo T, Ohtani E and El Goresy A 2000 Natural occurrence of high-pressure phases, jadeite, hollandite, wadsleyite and majorite-pyrope garnet, in an H chondrite; Meteor. Planet. Sci. 35 A87–88.

    Google Scholar 

  • Kingma K J, Cohen R E, Hemley R J and Mao H K 1995 Transformation of stishovite to a denser phase at lower-mantle pressures; Nature 374 243–245.

    Google Scholar 

  • Liu L, Mernagh T P and Hibberson W O 1997 Raman spectra of high-pressure polymorphs of SiO2 at various temperatures; Phys. Chem. Miner. 24 396–402.

    Google Scholar 

  • Mason B, Nelen J and White J S Jr 1968 Olivine-garnet transformation in a meteorite; Science 160 66–67.

    Google Scholar 

  • McSween H Y 1999 Meteorites and their parent planets; Cambridge University Press, London.

    Google Scholar 

  • Miyahara M, El Goresy A, Ohtani E, Kimura M, Ozawa S, Nagase T and Nishijima M 2009 Fractional crystallization of olivine melt inclusion in shock-induced chondritic melt vein; Phys. Earth Planet. Int. 177 116–121.

    Google Scholar 

  • Miyahara M, Ohtani E and Yamaguchi A 2015 High-pressure polymorphs in Gujba CB type carbonaceous chondrite; Japan Geoscience Union Meeting PPS22-20.

  • Miyamoto M and Ohsumi K 1995 Micro Raman spectroscopy of olivines in L6 chondrites: Evaluation of the degree of shock; Geophys. Res. Lett. 22 437–440.

    Google Scholar 

  • Nisr C, Shim S, Leinenweber K and Chizmeshya A 2017 Raman spectroscopy of water-rich stishovite and dense high-pressure silica up to 55 GPa; Am. Mineral. 102 2180–2189.

    Google Scholar 

  • Ohtani E, Kimura Y, Kimura M, Takata T, Kondo T and Kubo T 2004 Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: Constraints on shock conditions and parent body size; Earth Planet. Sci. Lett. 227 505–515.

    Google Scholar 

  • Ohtania E, Ozawaa S, Miyahara M, Itoa Y, Mikouchib T, Kimurac M, Araid T, Satoe K and Hiragae K 2011 Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface; PNAS 108 463–466.

    Google Scholar 

  • Ozawa S, Miyahara M, Ohtani E, Koroleva O N, Ito Y, Litasov K D and Pokhilenko N P 2014 Jadeite in Chelyabinsk meteorite and the nature of an impact event on its parent body; Sci. Rep. 4 1–5.

    Google Scholar 

  • Ozawa S, Ohtani E, Miyahara M, Suzuki A, Kimura M and Ito Y 2009 Transformation textures, mechanisms of formation of high-pressure mineralsin shock melt veins of L6 chondrites, and pressure-temperature conditions of the shock events; Meteor. Planet. Sci. 44 1771–1786.

    Google Scholar 

  • Parthasarathy G, Chetty T R K and Haggerty S E 2002 Thermal stability and spectroscopic studies of zemkorite: A carbonate from Venkatampalle kimberlite of Southern India; Am. Mineral. 87 1384–1389.

    Google Scholar 

  • Parthasarathy G and Sharma S R 2004 High-temperature electrical and thermal properties of Burdett, Dalhart, Faucet, and Wellman ordinary chondrites; Curr. Sci. 86 1366–1368.

    Google Scholar 

  • Pearson D G, Brenker F E, Nestola F, McNeill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B and Vincze L 2014 Hydrous mantle transition zone indicated by ringwoodite included within diamond; Nature 507 221–229.

    Google Scholar 

  • Price G D 1983 The nature and significance of stacking faults in wadsleyite, natural β-(Mg, Fe)2SiO4 from the Peace River Meteorite; Phys. Earth Planet. Int. 33 137–147.

    Google Scholar 

  • Price G D, Putnis A and Smith D G W 1982 A spinel to β-phase transformation mechanism in (Mg, Fe)2SiO4; Nature 296 729–731.

    Google Scholar 

  • Putnis A and Price G D 1979 High-pressure (Mg, Fe)2SiO4 phases in the Tenham chondritic meteorite; Nature 280 217–218.

    Google Scholar 

  • Ray D, Mahajan R R, Shukla A D, Goswami T and Chakraborty S 2017 Petrography, classification, oxygen isotopes, noble gases, and cosmogenic records of Kamargaon (L6) meteorite: The latest fall in India; Meteor. Planet. Sci. 52 1744–1753.

    Google Scholar 

  • Reynard B, Montagnac G and Cardon H 2012 Raman spectroscopy at high pressure and temperature for the study of the Earth’s mantle and planetary minerals; EMU Notes Mineral. 12 365–388.

    Google Scholar 

  • Saikia B J, Parthasarathy G and Sarmah N C 2008 Fourier transform infrared spectroscopic estimation of crystallinity in SiO2 based rocks; Bull. Mater. Sci. 31 775–779.

    Google Scholar 

  • Saikia B J, Parthasarathy G and Sarmah N C 2009a Fourier transform infrared spectroscopic characterization of Dergaon H5 chondrite: Evidence of aliphatic organic compound; Nat. Sci. 7 45–51.

    Google Scholar 

  • Saikia B J, Parthasarathy G and Sarmah N C 2009b Spectroscopic characterization of olivine [(Fe, Mg)2SiO4] in Mahadevpur H4/5 ordinary chondrite; J. Am. Sci. 5 71–78.

    Google Scholar 

  • Saikia B J, Parthasarathy G, Borah R R and Borthakur R 2016 Raman spectroscopic study of Dergaon H5 and Mahadevpur H4/5 chondrite; 47th LPSC abstract #1799.

  • Saikia B J, Parthasarathy G and Borah R R 2017a Nanodiamonds and silicate minerals in ordinary chondrites as determined by micro-Raman spectroscopy; Meteor. Planet. Sci. 52 1146–1154.

    Google Scholar 

  • Saikia B J, Parthasarathy G, Borah R R, Satyanarayanan M, Borthakur R and Chetia P 2017b Spectroscopy and mineralogy of a fresh meteorite fall Kamargaon (L6) chondrite; Proc. Indian Nat. Sci. Acad. 83 941–948.

    Google Scholar 

  • Saikia B J, Parthasarathy G, Borah R R, Borthakur R and Sarmah A J D 2017c Meteorite fall at Sadiya, India: A Raman spectroscopic classification; J. Astrophys. Aerospace Technol. 5 1000149.

    Google Scholar 

  • Saikia B J, Parthasarathy G and Borah R R 2017d Raman spectroscopy of Kamargaon L6 ordinary chondrite; 48th LPSC abstract #1979.

  • Saikia B J, Parthasarathy G and Borah R R 2018 Silicates in Kamargaon (L6) chondrite: A Raman spectroscopic study; OA J. Math. Theor. Phys. 1 225–230.

    Google Scholar 

  • Sharma S K, Mammone J F and Nicol M F 1981 Raman investigation of ring configurations in vitreous silica; Nature 292 140–141.

    Google Scholar 

  • Sharp T G, Lingemann C M, Dupas C and Stöffler D 1997 Natural occurrence of MgSiO3–ilmenite and evidence for MgSiO3-perovskite in a shocked L chondrite; Science 277 352–355.

    Google Scholar 

  • Sharp T G, Xie Z, DeCarli P S and Hu J 2015 A large shock vein in L chondrite Roosevelt County 106: Evidence for a long-duration shock pulse on the L chondrite parent body; Meteor. Planet. Sci. 50 1941–1953.

    Google Scholar 

  • Smith J V and Mason B 1970 Pyroxene-garnet transformation in Coorara meteorite; Science 168 832–833.

    Google Scholar 

  • Tiwari K, Ghosh S, Miyahara M and Ray D 2021 Shock-induced incongruent melting of Olivine in Kamargaon L6 Chondrite; Geophys. Res. Lett. 48 e2021GL093592.

  • Tomioka N and Fujino K 1997 Natural (Mg, Fe)SiO3-ilmenite and -perovskite in the Tenham meteorite; Science 277 1084–1086.

    Google Scholar 

  • Tomioka N and Kimura M 2003 The breakdown of diopside to Ca-rich majorite and glass in a shocked H chondrite; Earth Planet. Sci. Lett. 208 271–278.

    Google Scholar 

  • Tomioka N and Miyahara M 2017 High-pressure minerals in shocked meteorites; Meteor. Planet. Sci. 52 2017–2039.

    Google Scholar 

  • Tschauner O, Ma C, Beckett J R, Prescher C, Prakapenka V B and Rossman G R 2014 Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite; Science 346 1100–1102.

    Google Scholar 

  • Wang A, Kuebler K, Jolliff B and Haskin L A 2004a Mineralogy of a Martian meteorite as determined by Raman spectroscopy; J. Raman Spectrosc. 35 504–514.

    Google Scholar 

  • Wang A, Kuebler K, Jolliff B and Haskin L A 2004b Raman spectroscopy of Fe–Ti–Cr–oxides, case study: Martain meteorite EETA79001; Am. Mineral. 89 665–680.

    Google Scholar 

  • Weisberg M K and Kimura M 2010 Petrology and Raman spectroscopy of high pressure phases in the Gujba CB chondrite and the shock history of the CB parent body; Meteor. Planet. Sci. 45 873–884.

    Google Scholar 

  • Wu Z and Wentzcovitch R M 2007 Vibrational and thermodynamic properties of wadsleyite: A density functional study; J. Geophys. Res. 112 B12202.

    Google Scholar 

  • Xie X, Minitti M E, Chen M, Mao H K, Wang D, Shu J and Fei Y 2003 Tuite, γ–Ca3(PO4)2 a new mineral from the Suizhou L6 chondrite; Eur. J. Mineral. 15 1001–1005.

    Google Scholar 

  • Xie Z and Sharp T G 2004 High pressure phases in shock induced melt veins of the Umbarger L6 chondrite: Constraints of shock pressure; Meteor. Planet. Sci. 39 2043–2054.

    Google Scholar 

  • Xie Z and Sharp T G 2007 Host rock solid-state transformation in a shock-induced melt vein of Tenham L6 chondrite; Earth Planet. Sci. Lett. 254 433–445.

    Google Scholar 

  • Xie Z, Sharp T G and De Carli P S 2006a Estimating shock pressure based on high-pressure minerals in shock induced melt veins in L chondrites; Meteor. Planet. Sci. 41 1883–1898.

    Google Scholar 

  • Xie Z, Sharp T G and De Carli P S 2006b High-pressure phases in a shock-induced melt vein of the Tenham L6 chondrite: Constraints on shock pressure and duration; Geochim. Cosmochim. Acta 70 504–515.

    Google Scholar 

  • Zhang T, Hu S, Wang N, Lin Y, Gu L, Tang X, Zou X and Zhang M 2021 Formation mechanism of ringwoodite: Clues from the Martian meteorite Northwest Africa 8705; Earth Planets Space 73 165.

    Google Scholar 

Download references

Acknowledgements

This paper is dedicated to 80th Birthday of Prof N Bhandari, Physical Research Laboratory, Ahmadabad for his kind encouragement in investigations of mineralogical aspects of meteorites. We thank the Director, Indian Institute of Technology, Guwahati (IITG) for providing analytical facilities for characterization of the meteorite. We are grateful to the Prof S Ghosh of IIT Kharagpur and an anonymous reviewer for their useful comments. We are grateful to Prof Saibal Gupta for the editorial comments and improvising the manuscript quality. We also thank Dr S Sarmah, IIT Guwahati for his assistance in the spectroscopic analysis. GP is grateful to NIAS and INSA for the support under INSA Senior Scientist Scheme.

Author information

Authors and Affiliations

Authors

Contributions

BJS and GP have done formulation of the idea, sample collection, Raman analysis, XRD analysis, data interpretation and writing (review and editing), RRB has done thin section analysis, methodology adoption, data collection and curation.

Corresponding author

Correspondence to Bhaskar J Saikia.

Additional information

Communicated by Saibal Gupta

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saikia, B.J., Parthasarathy, G. & Borah, R.R. High-pressure polymorphs of olivine and silica in Kamargaon (L6) chondrite by laser micro-Raman and XRD studies. J Earth Syst Sci 131, 38 (2022). https://doi.org/10.1007/s12040-021-01803-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01803-y

Keywords

  • Kamargaon
  • high-pressure minerals
  • Raman spectroscopy
  • stishovite