Skip to main content

Advertisement

Log in

Carbonaceous material in Larji–Rampur window, Himachal Himalaya: Carbon isotope compositions, micro Raman spectroscopy and implications

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

This work focuses on the natural graphitic carbonaceous material (GCM) distributed in metasedimentary and crystalline rocks in and around Larji–Rampur tectonic window, Himachal Himalaya. The GCM, associated with the ore mineralization, is mostly flaky, however, it is also granular and amorphous. The micro Raman spectroscopy of representative samples confirms that the studied GCM is mostly disordered graphite and rarely poorly ordered graphite, but well crystalline ordered graphite is also present. The carbon isotope compositions reflecting the source of carbon in GCM at various locations attribute that the carbon was mostly sedimentary organic carbon which has been metamorphosed to disordered graphite, however, the δ13C of the inorganic carbon contents in metabasalts from Bhallan signify the involvement of fluid possibly derived from the mantle. Limited δ13Cinorganic data in a range from 0 to −11‰, points to the heavier carbon probably derived from the diagenetic carbonates or dissolved organic matter. Overall, the carbon isotope compositions of GCM from the Larji–Rampur window reflect diversity in carbon source and mixing of carbon reservoirs, which can adequately be explained by the Proterozoic marine carbon cycling. A close linkage in the depositional processes of GCM with ore mineralization in the area is also invoked.

Research Highlights

  • The graphitic carbonaceous material (GCM) is present in and around Larji–Rampur tectonic window, Himachal Himalaya, at places associated with ore mineralization.

  • Micro Raman spectroscopy confirms the presence that this GCM is mostly disordered graphite though the ordered graphite is also present uncommonly.

  • The δ13C values vary widely from –1.5‰ to –33.5‰. The δ13C compositions are heterogeneous and complex carbon systematics is apparent. In addition to the predominant sedimentary organic carbon form Proterozoic marine carbon, it was also derived from carbonate source, carbon from the fluids, and rarely but possibly from the mantle source.

  • A close linkage in the formation and evolution processes of the GCM with the ore mineralization is also invoked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

source of carbon for higher δ13C values is carbonates and/or mantle carbon. Range of carbon isotopic variations in selected fluid deposited and metamorphosed graphite occurrences are also shown (modified after Luque et al. 2012). (For the data of various other areas shown in the figure, the readers are referred to Sharma and Rawat 2011; Sanyal et al. 2009 and Luque et al. 2012).

Similar content being viewed by others

References

  • Ader M, Macouin M, Trindade R I F, Hadrien M H, Yang Z, Sun Z and Besse J 2009 A multi layered water column in the Ediacaran Yangtze platform? Insights from carbonate and organic matter paired δ13C; Earth Planet. Sci. Lett. 288 213–227.

    Article  Google Scholar 

  • Aoya M, Kouketsu Y, Endo S, Shimizu H, Mizukami T, Nakamura D and Wallis S 2010 Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks; J. Metamorph. Geol. 28 895–914.

    Article  Google Scholar 

  • Baiju K R, Nambiar C G, Jadhav G N, Kagi H and Satish-Kumar M 2009 Low-density CO2-rich fluid inclusions from charnockites of southwestern Madurai Granulite Block, southern India: Implications on graphite mineralization; J. Asian Earth Sci. 8 332–340.

    Article  Google Scholar 

  • Baiju K R, Satish-Kumar M, Kagi H, Nambiar C G and Ravisankar M 2005 Mineralogical characterization of graphite deposits from Thodupuzha-Kanjirappally belt, Madurai Granulite Block, southern India; Gondwana Res. 8 223–230.

  • Barrenechea J F, Luque F J, Millward D, Ortega L, Beyssac O and Rodas M 2009 Graphite morphologies from the Borrowdale deposit (NW England, UK): Raman and SIMS data; Contrib. Mineral. Petrol. 158 37–51.

    Article  Google Scholar 

  • Bartels K S and Pasteris J D 1993 Preliminary results on the relation between graphite derived from metamorphosed organic matter and fluid deposition in rocks of the KTB-VB and -HB: A Raman spectroscopic study; In: KTB Rep 93-2 (eds) Emmermann R, Lauterjung J and Umsonst T, Hannover, Germany, pp. 499–502.

  • Beyssac O, Bollinger L, Avouac J P and Goffé B 2004 Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material; Earth Planet. Sci. Lett. 225 233–241.

    Article  Google Scholar 

  • Beyssac O and Rumble D 2014 Graphitic carbon: A ubiquitous, diverse, and useful geomaterial; Elements 10 415–420.

    Article  Google Scholar 

  • Beyssac O, Goffé B, Chopin C and Rouzaud J N 2002 Raman spectrum of carbonaceous material in metasediments: A new geothermometer; J. Metamorph. Geol. 20 859–871.

    Article  Google Scholar 

  • Beyssac O, Goffé B, Petitet J P, Froigneux E, Moreau M and Rouzaud J N 2003 On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy; Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 59(10) 2267–2276.

    Article  Google Scholar 

  • Bhalla N S and Gupta J N 1979 U-Pb isotopic ages of uraninites from Kulu, Himachal Pradesh and Berinag, Uttar Pradesh; J. Geol. Soc. India 20 481–488.

    Google Scholar 

  • Bhargava O N, Bassi U K and Sharma R K 1991 The crystalline thrust sheets, age of metamorprphism, evolution and mineralisation of the Himachal Himalaya; Ind. Mineral. 45(1 & 2) 1–18.

    Google Scholar 

  • Bhargava O N, Narain K and Dass A S 1972 A note on the Rampur window, district Mahasu, H.P.; J. Geol. Soc. India 13(3) 277–280.

  • Bhat M I and Le Fort P 1992 Sm–Nd age and petrogenesis of Rampur metavolcanic rocks, NW Himalayas: Late Archaean relics in the Himalayan belt; Precamb. Res. 56(3–4) 191–210.

    Article  Google Scholar 

  • Binu-Lal S S, Kehelpannala K V W, Satish-Kumar M and Wada H 2003 Multistage graphite precipitation through protracted fluid flow in sheared metagranitoid, Digana, Sri Lanka: Evidence from stable isotopes; Chem. Geol. 197 253–270.

    Article  Google Scholar 

  • Buseck P R and Beyssac O 2014 From organic matter to graphite: Graphitization; Elements 10 421–426.

    Article  Google Scholar 

  • Caddick M J, Bickle M J, Harris N B W, Holland T J B, Horstwood M S A, Parrish R R and Ahmad T 2007 Burial and exhumation history of a Lesser Himalayan schist: Recording the formation of an inverted metamorphic sequence in NW India; Earth Planet. Sci. Lett. 264(3) 375–390.

    Article  Google Scholar 

  • Caetano-Filho S, Sansjofre P, Ader M, Paula-Santos G M, Guacaneme C, Babinski M, Bedoya Rueda C, Kuchenbecker M, Reis H L and Trindade R I 2021 A large epeiric methanogenic Bambuí sea in the core of Gondwana supercontinent; Geosci. Front. 12(1) 203–218.

    Article  Google Scholar 

  • Calvert J 1873 Vazeeri Rupi, the silver country of the Vazeers; In: Kulu, its beauties, antiquities and silver mines, including a trip over the lower Himalayah range and glaciers, with numerous illustrations, E and Spon F N, London.

  • Choudhary S, Sen K, Kumar S, Rana S and Ghosh S 2020 Forsterite reprecipitation and carbon dioxide entrapment in the lithospheric mantle during its interaction with carbonatitic melt: A case study from the Sung Valley ultramafic–alkaline–carbonatite complex, Meghalaya, NE India; Geol. Mag. 158(3) 475–486.

    Article  Google Scholar 

  • Cox R, Lowe D R and Cullers R L 1995 The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States; Geochim. Cosmochim. Acta 59 2919–2940.

    Article  Google Scholar 

  • Craw D, MacKenzie D J and Grieve P 2015 Supergene gold mobility in orogenic gold deposits, Otago Schist, New Zealand; J. Geol. Geophys. 58 123–136.

    Article  Google Scholar 

  • Crespo E, Luque F J, Rodas M, Wada H and Gervilla F 2006 Graphite sulphide deposits in Ronda and Beni Bousera peridotites (Spain and Morocco) and the origin of carbon in mantle-derived rocks; Gondwana Res. 9 279–290.

  • Crespo E, Luque J, Fernández-Rodriguez C, Rodas M, Diaz-Azpiroz M, Fernández-Caliani J C and Barrenechea J F 2004 Significance of graphite occurrences in the Aracena Metamorphic Belt, Iberian Massif; Geol. Mag. 141 687–697.

    Article  Google Scholar 

  • Cui H, Kaufman A J, Peng Y, Liu X M, Plummer R E and Lee E I 2018 The Neoproterozoic Hüttenberg δ13C anomaly: Genesis and global implications; Precamb. Res. 313 242–262.

    Article  Google Scholar 

  • Das S, Basu A R and Mukherjee B K 2017 In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone; Geology 45(8) 755–758.

    Google Scholar 

  • Deines P 1989 Stable isotope variations in carbonatites; In: Carbonatites—genesis and evolution (ed.) Bell K, Unwin Hyman, Boston, pp. 301–350.

    Google Scholar 

  • Dodd M S, Papineau D, She Z B, Manikyamba C, Wan Y S, O’Neil J, Karhu J A, Rizo H and Pirajno F 2019 Widespread occurrences of variably crystalline 13C-depleted graphitic carbon in banded iron formations; Earth Planet. Sci. Lett. 512 163–174.

    Article  Google Scholar 

  • Doroshkevich A G, Wall F and Ripp G S 2007 Magmatic graphite in dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia; Contrib. Mineral. Petrol. 153 339–353.

    Article  Google Scholar 

  • Dubessy J 1984 Simulation of chemical equilibria in the C–O–H system: Methodological consequences for fluid inclusions; Bull. Minéral. 107 155–168.

    Article  Google Scholar 

  • Dunn S R and Valley J W 1992 Calcite–graphite isotope thermometry: A test for ploy-metamorphism in marble, Tudor gabbro aureole, Ontario, Canada; J. Metamorph. Geol. 10 487–501.

    Article  Google Scholar 

  • Durand B and Nicaise G 1980 Procedures for kerogen isolation; In: Kerogen-insoluble organic matter from sedimentary rocks (ed.) Durand B, Editions Technip, Paris, pp. 35–53.

    Google Scholar 

  • Eichman R and Schidlowski M 1975 Isotopic fractionation between co-existing organic carbon-carbonate pairs in Precambrian sediments; Geochim. Cosmochim. Acta 39 585–595.

    Article  Google Scholar 

  • Farquhar J, Hauri E and Wang J 1999 New insights into carbon fluid chemistry and graphite precipitation: SIMS analysis of granulite facies graphite from Ponmudi, south India; Earth Planet. Sci. Lett. 171 607–621.

    Article  Google Scholar 

  • Frank W, Thoni M and Purtscheller F 1977 Geology and petrography of Kulu-south Lahul area; In: Himalayas Science de la Terre, CNRS, Paris 268 147–172.

  • Gross M G 1964 Variations in the 18O/16O and 13C/12C ratios of diagenetically altered limestones in the Bermuda Islands; J. Geol. 72 172–193.

    Article  Google Scholar 

  • Hahn-Weinheimer P and Hirner A 1981 Isotopic evidence for the origin of graphite; Geophys. J. Roy. Astron. Soc. 15 9–15.

    Google Scholar 

  • Halverson G P, Wade B P, Hurtgen M T and Barovich K M 2010 Neoproterozoic chemostratigraphy; Precamb. Res. 182(4) 337–350.

    Article  Google Scholar 

  • Halverson G, Hoffman P, Schrag D, Maloof A and Rice A 2005 Towards a Neoproterozoic composite carbon isotope record; Geol. Soc. Am. Bull. 117 1181–1207.

    Article  Google Scholar 

  • Harvey H R, Tuttle J H and Bell J T 1995 Kinetics of phytoplankton decay during simulated sedimentation: Changes in biochemical composition and microbial activity under oxic and anoxic conditions; Geochim. Cosmochim. Acta 59 3367–3377.

    Article  Google Scholar 

  • Hedges J I, Clark W A and Cowie G L 1988 Fluxes and reactivities of organic matter in a coastal marine bay; Limnol. Oceanogr. 33 1137–1152.

    Article  Google Scholar 

  • Hoefs J and Frey M J 1976 The isotopic composition of carbonaceous matter in a metamorphic profile of the Swiss Alps; Geochim. Cosmochim. Acta 40 945–951.

    Article  Google Scholar 

  • Hu S, Evans K, Craw D, Rempel K, Bourdet J, Dick J and Grice K 2015 Raman characterization of carbonaceous material in the Macraes orogenic gold deposit and metasedimentary host rocks, New Zealand; Ore Geol. Rev. 70 80–95.

    Article  Google Scholar 

  • Irwin H, Curtis C and Coleman M 1977 Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments; Nature 269(5625) 209–213.

    Article  Google Scholar 

  • Jain A K and Anand A 1988 Deformational and strain patterns of an intracontinental collision ductile shear zone; an example from the higher Garhwal Himalaya; J. Struct. Geol. 10 717–734.

    Article  Google Scholar 

  • Jain A K, Kumar D, Singh S, Kumar A and Lal N 2000 Timing, quantification and tectonic modelling of Pliocene-Quaternary movements in the NW Himalaya: Evidence from fission track dating; Earth Planet. Sci. Lett. 179(3) 437–451.

    Article  Google Scholar 

  • Jaszczak J A, Dimovski S, Hackney S A, Robinson G W, Bosio P and Gogotsi Y 2007 Micro- and nanoscale graphite cones and tubes from Hackman Valley, Kola Peninsula, Russia; Can. Mineral. 45 379–389.

    Article  Google Scholar 

  • Jaszczak J A, Robinson G W, Dimovski S and Gogotsi Y 2003 Naturally occurring graphite cones; Carbon 41 2085–2092.

    Article  Google Scholar 

  • Jehlička J, Urban O and Pokorný J 2003 Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks; Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 59 2341–2352.

    Article  Google Scholar 

  • Jhingran A G, Kohli G and Shukla B N 1952 Geological notes on the traverse to the Spiti-valley (Punjab); jointly with 3rd Royal Danish Expedition to central Asia 1950; Geol. Surv. India (unpublished report).

  • Kathiara R S 1962 The report on the preliminary investigation for lead, around old workings near Chitrani, Kulu Sub-division Distt. Kangra, Punjab (Ibid).

  • Kehelpannala K V W 1999 Epigenetic vein graphite mineralization in the granulite terrain of Sri Lanka; Gondwana Res. 2 654–657.

  • Keller J and Hoefs J 1995 Stable isotope characteristics of recent natrocarbonatite from Oldoiyno Lengai; In: Carbonatite Volcanism: Oldoinyo Lengai and Petrogenesis of Natrocarbonatite (eds) Bell K and Keller J, Springer, Berlin, pp. 113–123.

    Chapter  Google Scholar 

  • Kribek B, Hrabal J, Landais P and Hladikova J 1994 The association of poorly ordered graphite, coke and bitumens in greenschist facies rocks of the Ponikla’ group, Lugikum, Czech Republic: The result of graphitization of various types of carbonaceous matter; J. Metamorph. Geol. 12 493–503.

    Article  Google Scholar 

  • Kribek B, Sykorova I, Machovic V, Knesl I, Laufek F and Zacharias J 2015 The origin and hydrothermal mobilization of carbonaceous matter associated with Paleoproterozoic orogenic-type gold deposits of West Africa; Precamb. Res. 270 300–317.

    Article  Google Scholar 

  • Krishnamurthi R, Sahoo A K, Sharma R and Sangurmath P 2020 Abundance of Carbonic fluid inclusions in Hira-Buddini Gold Deposit, Hutti-Maski Greenstone Belt, India: Inferences from petrography and volume ratio estimation of fluid components; J. Earth Sci. 31(3) 492–499.

    Article  Google Scholar 

  • Kyser T K 1990 Stable isotopes in the continental lithospheric mantle; In: The continental lithosphere (ed.) Menzies M, Oxford University Press, Oxford, pp. 127–156.

    Google Scholar 

  • Lahfid A, Beyssac O, Deville E, Negro F, Chopin C and Goffé B 2010 Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland); Terra Nova 22(5) 354–360.

    Article  Google Scholar 

  • Large D J, Christy A G and Fallick A E 1994 Poorly crystalline carbonaceous matter in high grade metasediments: Implications of graphitization and metamorphic fluids compositions; Contrib. Mineral. Petrol. 116 108–116.

    Article  Google Scholar 

  • Lepland A, van Zuilen M A and Philippot P 2011 Fluid deposited graphite and its geobiological implications in early Archean gneiss from Akilia Greenland; Geobiology 9 2–9.

    Article  Google Scholar 

  • Libes S M 1992 An introduction to marine biogeochemistry; John Wiley and Sons, London, 734p.

    Google Scholar 

  • Luque F J and Rodas M 1999 Constraints on graphite crystallinity in some Spanish fluid-deposited occurrences from different geologic settings; Mineral. Deposita 34 215–219.

    Article  Google Scholar 

  • Luque F J, Crespo-Feo E, Barrenechea J F and Ortega L 2012 Carbon isotopes of graphite: Implications on fluid history; Geosci. Front. 3(2) 197–207.

    Article  Google Scholar 

  • Luque F J, Pasteris J D, Wopenka B, Rodas M and Barrenechea J F 1998 Natural fluid deposited graphite: Mineralogical characteristics and mechanisms of formation; Am. J. Sci. 298 471–498.

    Article  Google Scholar 

  • Mathez E A, Dietrich V J, Holloway J R and Boudreau A E 1989 Carbon distribution in the Stillwater Complex and evolution of vapor during crystallization of Stillwater and Bushveld magmas; J. Petrol. 30 153–173.

    Article  Google Scholar 

  • Mattey D P 1987 Carbon isotopes in the mantle; Terra Cognita 7 31–37.

    Google Scholar 

  • Melim L A, Swart P K and Maliva R G 2001 In: Subsurface Geology of a Prograding Carbonate Platform Margin, Great Bahama Bank: Results of the Bahamas Drilling Project (ed.) Ginsburg R N, SEPM Spec. Publ. 70 61–100.

  • Miller C, Klotzli U, Frank W, Thöni M and Grasemann B 2000 Proterozoic crustal evolution in the NW Himalaya (India) as recorded by circa 1.80 Ga mafic and 1.84 Ga granitic magmatism; Precamb. Res. 103(3–4) 191–206.

  • Mirasol-Robert A, Grotheer H, Bourdet J, Suvorova A, Grice K, McCuaig T C and Greenwood P F 2017 Evidence and origin of different types of sedimentary organic matter from a Paleoproterozoic orogenic Au deposit; Precamb. Res. 299 319–338.

    Article  Google Scholar 

  • Misra D K and Tewari V C 1988 Tectonics and sedimentation of the rocks between mandi and Rohtang Beas Valley, Himachal Pradesh, India; Geosci. J. 9 153–172.

    Google Scholar 

  • Narain Dass G R, Parthasarthi T N and Taneja P C 1979 Geological structure and uranium mineralisation in Kulu, Himachal Himalaya; J. Geol. Soc. India 20(3) 95–102.

    Google Scholar 

  • Narayan Das G R, Parthasarthy T N, Taneja P C and Perumal N V A S 1979 Geology, structure and uranium mineralization in Kulu, Himchal Himalaya; J. Geol. Soc. India 20 95–102.

    Google Scholar 

  • Nemanich R J and Solin S A 1979 First- and second-order Raman scattering from finite-size crystals of graphite; Phys. Rev. B 20(2) 392.

    Article  Google Scholar 

  • Ohmoto H 1972 Systematics of sulfur and carbon isotopes in hydrothermal ore deposits; Econ. Geol. 67 551–578.

    Article  Google Scholar 

  • Pandey A K, Virdi N S and Gairola V K 2003 Evolution of structural fabrics and deformation events in the Kulu-Rampur and Larji Window zones, NW Himalaya, India; Him. Geol. 24 1–21.

    Google Scholar 

  • Papineau D, De Gregorio B T, Stroud R M, Steele A, Pecoits E, Konhauser K, Wang J and Fogel M L 2010 Ancient graphite in the Eoarchean quartz-pyroxene rocks from Akilia in southern West Greenland II: Isotopic and chemical compositions and comparison with Paleoproterozoic banded iron formations; Geochim. Cosmochim. Acta 74 5884–5905.

    Article  Google Scholar 

  • Pasteris J D and Wopenka B 1991 Raman spectra of graphite as indicators of degree of metamorphism; Can. Mineral. 29 1–9.

    Google Scholar 

  • Radhika U P and Santosh M 1996 Shear-zone hosted graphite in southern Kerala, India: Implications for CO2 infiltration; J. Southeast Asian Earth Sci. 14 265–273.

    Article  Google Scholar 

  • Rahl J M, Anderson K M, Brandon M T and Fassoulas C 2005 Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece; Earth Planet. Sci. Lett. 240 339–354.

    Article  Google Scholar 

  • Reich S and Thomson C 2004 Raman spectroscopy of graphite; Phil. Trans. Roy. Soc. London A 362 2271–2288.

    Article  Google Scholar 

  • Rothman D H, Hayes J M and Summons R E 2003 Dynamics of the Neoproterozoic carbon cycle; Proc. Nat. Acad. Sci. 100(14) 8124–8129.

    Article  Google Scholar 

  • Rumble D and Hoering T C 1986 Carbon isotope geochemistry of graphite vein deposits from new Hamshire USA; Geochim. Cosmochim. Acta 50 1239–1247.

    Article  Google Scholar 

  • Sadezky A, Muckenhuber H, Grothe H, Niessner R and Pöschl U 2005 Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information; Carbon 43(8) 1731–1742.

    Article  Google Scholar 

  • Sanguri M, Sharma R, Rao D R, Pandey M and Sharma A K 2017 Syn- to Post-Metamorphic fluid in the central crystallines of Kumaun Himalaya: Evidence from fluid inclusions study of the metapelites; Him. Geol. 38 56–67.

    Google Scholar 

  • Sansjofre P, Ader M, Trindade R I F, Elie M, Lyons J, Cartigny P and Nogueira A C R 2011 A carbon isotope challenge to the snowball Earth; Nature 478 93–96.

    Article  Google Scholar 

  • Santosh M and Wada H 1993 A carbon isotope study of graphites from the Kerala Khondalite Belt, southern India: Evidence for CO2 infiltration in granulites; J. Geol. 101 643–651.

    Article  Google Scholar 

  • Santosh M, Harris N B W, Jackson D H and Mattey D P 1990 Dehydration and incipient charnockite formation: A phase equilibria and fluid inclusion study from South India; J. Geol. 98 915–926.

    Article  Google Scholar 

  • Santrock J, Studley S A and Hayes J 1985 Isotopic analyses based on the mass spectra of carbon dioxide; Anal. Chem. 57 1444–1448.

    Article  Google Scholar 

  • Sanyal P, Acharya B C, Bhattacharya S K, Sarkar A, Agrawal S and Bera M K 2009 Origin of graphite, and temperature of metamorphism in Precambrian Eastern Ghats Mobile Belt, Orissa, India: A carbon isotope approach; J. Asian Earth Sci. 36 252–260.

    Article  Google Scholar 

  • Satish-Kumar M 2005 Graphite-bearing CO2 fluid inclusions in granulites: Insights on graphite precipitation and carbon isotope evolution; Geochim. Cosmochim. Acta 69 3841–3856.

    Article  Google Scholar 

  • Sauiniac S and Touret J 1983 Petrology and fluid inclusions in quartz-kyanite segressions in the main central thrust zone of the Himalaya; Lithos 16 35–45.

    Article  Google Scholar 

  • Schidlowski M 1987 Application of stable carbon isotopes to early biochemical evolution on Earth; Ann. Rev. Earth Planet. Sci. 15 47–72.

    Article  Google Scholar 

  • Schidlowski M 1995 Early terrestrial life: Problems of the oldest record; In: Chemical evolution; self-organization of the macromolecules of life (eds) Chela-Flores J et al., Deepak A Publishing Co., Hampton, VA, USA, pp. 65–80.

  • Schidlowski M 2001 Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: Evolution of a concept; Precamb. Res. 106 117–134.

    Article  Google Scholar 

  • Schidlowski M, Hayes J M and Kaplan I R 1983 Isotopic inferences of ancient biochemistries: Carbon, sulfur, hydrogen and nitrogen; In: Earth’s earliest biosphere, its origin and evolution (ed.) Schopf J W, Princeton University Press, pp. 149–186.

  • Schrag D P, Higgins J A, Macdonald F A and Johnston D T 2013 Authigenic carbonate and the history of the global carbon cycle: Why diagenesis matters even more; Sci. Adv. 339 2223.

    Google Scholar 

  • Sen D B, Suresh Kumar and Gangadharan G R 1995 Geological evolution and Uranium mineralisation of Chhinjra area, Kulu district, Himachal Pradesh; J. Geol. Soc. India 46 107–116.

    Google Scholar 

  • Shackleton N J and Pisias N G 1985 Atmospheric carbon dioxide, orbital forcing and climate; In: The carbon cycle and atmospheric CO2: Natural variations Archean to present (eds) Sundquist E T and Broecker W S, Am. Geophys. Un. Geophys. Monogr. 32 303–317.

  • Sharma H S S, Carmichael E and McCall D 2016 Fabrication of SERS substrate for the detection of rhodamine 6G, glyphosate, melamine and salicylic acid; Vib. Spectrosc. 83 159–169.

    Article  Google Scholar 

  • Sharma K K and Rashid S A 2001 Geochemical evolution of peraluminous Paleoproterozoic Bandal Orthogneiss NW, Himalaya, Himachal Pradesh, India: Implications for the ancient crustal growth in the Himalaya; J. Asian Earth Sci. 19 413–428.

    Article  Google Scholar 

  • Sharma R 2012 The fluid system associated with the volcano sedimentary sulphides mineralization in Himalayan tectonic domain; In: 4th Biannual Asian Current Research on Fluid Inclusions (eds) Mernagh T P, Hagemann S G and Kamenetsky V S, Brisbane, Australia, pp. 69–70.

  • Sharma R and Rawat R 2011 Features and characterization of graphite in Almora Crystallines and their implication for the graphite formation in lesser Himalaya India; J. Asian Earth Sci. 42 51–64.

    Article  Google Scholar 

  • Sharma V P 1966 Report on detailed investigation of Copper in Naraul Chashani area and systematic mapping in Bhuntar–Sainj area Kulu district Himachal Pradesh; Geol. Surv. India (unpublished report).

  • Sharma V P 1977 Geology of Kulu–Rampur Belt, Himachal Pradesh; Geol. Surv. India Memoir 106(II) 235–407.

  • Singh P, Ao A, Thakur S S, Rana R, Sharma R, Singh A K and Singhal S 2021 Geology, structural, metamorphic and mineralization studies along the Mandi–Kullu–Manali–Rohtang Section of Himachal Pradesh, NW-India; In: Structural geology and tectonics field guidebook (ed.) Mukherjee S, Springer Nature, Switzerland, 1 437–460.

  • Srikantia S V and Bhargava O N 1998 Geology of Himachal Pradesh; Geol. Soc. India, pp. 406–461.

  • Steck A 2003 Geology of the NW Indian Himalaya; Eclogae Geol. Helv. 96(2) 147.

    Google Scholar 

  • Stübner K, Grujic D, Dunkl I, Thiede R and Eugster P 2018 Pliocene episodic exhumation and the significance of the Munsiari thrust in the northwestern Himalaya; Earth Planet. Sci. Lett. 481 273–283.

    Article  Google Scholar 

  • Sugisaki R and Mimura K 1994 Mantle hydrocarbons: Abiotic or biotic; Geochim. Cosmochim. Acta 58 2527–2542.

    Article  Google Scholar 

  • Tazaki K, Ferris F G, Wise R G and Fyfe W S 1992 Iron and graphite associated with fossil bacteria in chert; Chem. Geol. 95 313–325.

    Article  Google Scholar 

  • Thakur V C 1992 Geology of Western Himalaya; Pergamon Press, New York, 363p.

    Google Scholar 

  • Thiede R C, Arrowsmith J R, Bookhagen B, McWilliams M O, Sobel E R and Strecker M R 2005 From tectonically to erosionally controlled development of the Himalayan orogeny; Geology 33(8) 689–692.

    Article  Google Scholar 

  • Thomassot E, Cartigny P, Harris J W and Viljoen K S 2007 Methane related diamond crystallization in the Earth’s mantle: Stable isotope evidences from a single diamond-bearing xenoliths; Earth Planet. Sci. Lett. 257 362–371.

    Article  Google Scholar 

  • Thoni M 1977 Geology, structural evolution and metamorphic zoning in the Kullu valley (Himachal Himalayas, India) with special reference to the reversed metamorphism; Mitt. Ges. Geologieund. Bergbaustud. Österr. 24 125–187.

    Google Scholar 

  • Tuinstra F and Koenig J L 1970 Raman spectrum of graphite; J. Chem. Phys. 53(3) 1126–1130.

    Article  Google Scholar 

  • Ueno Y, Yurimoto H, Yoshioka H, Komiya T and Maruyama S 2002 Ion microprobe analysis of graphite from ca. 3.8 Ga metasediments, Isua supracrustal belt, West Greenland: Relationship between metamorphism and carbon isotopic composition; Geochim. Cosmochim. Acta 66 1257–1268.

    Article  Google Scholar 

  • Uhlein G J, Uhlein A, Pereira E, Caxito F A, Okubo J, Warren L V and Sial A N 2019 Ediacaran paleoenvironmental changes recorded in the mixed carbonate-siliciclastic Bambuí Basin, Brazil; Palaeogeogr. Palaeoclimatol. Palaeoecol. 517 39–51.

    Article  Google Scholar 

  • Upton P and Craw D 2008 Modelling the role of graphite in development of a mineralised mid-crustal shear zone, Macraes mine, New Zealand; Earth Planet. Sci. Lett. 266 245–255.

    Article  Google Scholar 

  • Valdiya K S 1980 The two intracrustal boundary thrusts of the Himalaya; Tectonophys. 66(4) 323–348.

    Article  Google Scholar 

  • Van Zuilen M A, Lepland A and Arrhenius G 2002 Reassessing the evidence for the earliest traces of life; Nature 418 627–630.

    Article  Google Scholar 

  • Van Zuilen M A, Lepland A, Teranes J, Finarelli J, Wahlen M and Arrhenius G 2003 Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland; Precamb. Res. 126 331–348.

    Article  Google Scholar 

  • Vannay J C and Grasemann B 2001 Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion; Geol. Mag. 138(03) 253–276.

    Article  Google Scholar 

  • Vannay J C, Grasemann B, Rahn M, Frank W, Carter A, Baudraz V and Cosca M 2004 Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: Evidence for tectonic extrusion coupled to fluvial erosion; Tectonics 23 TC1014.

  • Veizer J and Hoefs J 1976 The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks; Geochim. Cosmochim. Acta 40(11) 1387–1395.

    Article  Google Scholar 

  • Wada H 1988 Microscale isotopic zoning in calcite and graphite crystals in marble; Nature 331 61–63.

    Article  Google Scholar 

  • Wada H, Tomita T, Iuchi K, Ito M and Morikiyo T 1994 Graphitization of carbonaceous matter during metamorphism with reference to carbonate and pelitic rocks of contact and regional metamorphism, Japan; Contrib. Mineral. Petrol. 118 217–228.

    Article  Google Scholar 

  • Walter L M, Ku T C W, Muehlenbachs K, Patterson W P and Bopnnell L 2007 Controls on the δ13C of dissolved organic carbon in marine pore waters: An integrated study of isotope exchange during syndepositional recrystallization of biogenic carbonate sediments (South Florida Platform, USA); Deep-Sea Res. Part II 54 1163–1200.

    Article  Google Scholar 

  • Walter M J, Kohn S C, Araujo D, Bulanova G P, Smith C B, Gaillou E, Wang J, Steele A and Shirey S B 2011 Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions; Science 334 54–57.

    Article  Google Scholar 

  • Webb A A G 2013 Preliminary balanced palinspastic reconstruction of Cenozoic deformation across the Himachal Himalaya (northwestern India); Geosphere 9(3) 572–587.

    Article  Google Scholar 

  • Webb A A G, Yin A, Harrison T M, Célérier J, Gehrels G E, Manning C E and Grove M 2011 Cenozoic tectonic history of the Himachal Himalaya (northwestern India) and its constraints on the formation mechanism of the Himalayan orogeny; Geosphere 7(4) 1013–1061.

    Article  Google Scholar 

  • Weis P L, Friedman I and Gleason J P 1981 The origin of epigenetic graphite: Evidence from isotopes; Geochim. Cosmochim. Acta 45 2325–2332.

    Article  Google Scholar 

  • Wopenka B and Pasteris J D 1993 Structural characterization of kerogens to granulite facies graphite: Applicability of Raman microprobe spectroscopy; Am. Mineral. 78 533–557.

    Google Scholar 

  • Ziegenbein D, Skrotzki R, Hoefs J, Müller H, Reutel C and Emmermann R 1989 Fluid transport und Graphitbildung auf Störungszonen; In: KTB Rep 89-3 (eds) Emmermann R and Giese P, Hannover, Germany, pp. 46–53.

Download references

Acknowledgements

The authors thank Director, Wadia Institute of Himalayan Geology for providing facilities for this work. This paper is Wadia Institute contribution number: WIHG/0092. SR gratefully acknowledge the Research Fellowship from Wadia Institute of Himalayan Geology, Dehradun. We thank the editor, Dr Rajneesh Bhutani and the two anonymous reviewers for constructive reviews.

Author information

Authors and Affiliations

Authors

Contributions

SR and RS have carried out the field work, laboratory studies and prepared the manuscript. SK has discussed the research work and contributed in improving the manuscript.

Corresponding author

Correspondence to Rajesh Sharma.

Additional information

Communicated by Rajneesh Bhutani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S., Sharma, R. & Kumar, S. Carbonaceous material in Larji–Rampur window, Himachal Himalaya: Carbon isotope compositions, micro Raman spectroscopy and implications. J Earth Syst Sci 130, 239 (2021). https://doi.org/10.1007/s12040-021-01732-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01732-w

Keywords

Navigation