Skip to main content

Origin and tectonic implications of a new Belur–Sarkar Nattar Mangalam–Udayapatti shear zone (BNUSZ), Salem Granulite Block, India: Insights from deformation and magnetic fabrics

Abstract

Deformation and magnetic fabrics across the Salem and Namakkal Granulite Blocks (southern India) have been integrated to understand the poly-phase (D1–D3 ductile and D4 brittle) tectonic reworking in the study area. D1 gneissic fabric (S1) is the dominant regional-scale mesoscopic fabric in the charnockite host. Localized ductile shearing at low temperature and development of shear bands, mylonite and phyllonite zone with respectively transposed-S1, mylonite (SM) and phyllonite (SP) fabric characterize D3 phase. Presence of true shear zone rocks with distinct deformation and magnetic fabrics helps in demarcating a new Belur–Sarkar Nattar Mangalam–Udayapatti shear zone (BNUSZ). Magnetic fabrics are deformation-controlled and result in vorticity variation from simple shear (Wn = 0.85) to general shear (Wn = 0.64) to pure shear (Wn = 0.1) across the BNUSZ. Magnetic fabrics document a progressive transition from early ductile shear zone to late-stage thrust and flip of the σ1 stress axis from WNW–ESE to NNE–SSW. Down-dip magnetic lineation, north-verging WNW–ESE trending asymmetric folding on SP and pole to S1 recognize a forelimb thrust with northward transport. Stress-localization on the forelimb of D3 shear-induced asymmetric fold initiates thrust. Phyllonitization helps in partitioning of D3 strain and concomitant structural complexity in hangingwall, south of the BNUSZ.

Research highlights

  • A new Belur–Sarkar Nattar Mangalam–Udayapatti Shear zone (BNUSZ) is identified in the Salem Granulite Block (SGB).

  • The BNUSZ represents the sole tectonic marker for last D3 ductile shearing in the SGB.

  • Deformation and magnetic fabric development suggest a forelimb thrust origin for the BNUSZ.

  • A fold-first tectonic model best explains the initiation of the BNUSZ thrust.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. Anand A, Balakrishnan S, Kooijman E and Mezger K 2014 Neoarchean crustal growth by accretionary processes: Evidence from combined zircon–titanite U–Pb isotope studies on granitoid rocks around the Hutti greenstone belt, eastern Dharwar Craton, India; J. Asian Earth Sci. 79 72–85.

    Article  Google Scholar 

  2. Ananth C, Bhadra S and Goswami A 2020 Contrasting kinematics of brittle-shears within the Salem–Attur and Bhavani shear zone, south India: Tectonic implications; J. Earth Syst. Sci. 129 62.

    Article  Google Scholar 

  3. Baker D M, Lillie R J, Yeats R S, Johnson G D, Yousuf M and Hamid Zamin A S 1988 Development of Himalayan frontal thrust zone: Salt Range, Pakistan; Geology 18 3–7.

    Article  Google Scholar 

  4. Balk R 1937 Structural behaviour of igneous rocks; Geol. Soc. Am. Memoir 5 177.

    Google Scholar 

  5. Bartlett J M, Dougherty-Page J S, Harris N B W, Hawkesworth C J and Santosh M 1998 The application of single zircon evaporation and model Nd ages to the interpretation of polymetamorphic terrains: An example from the Proterozoic mobile belt of south India; Contrib. Mineral. Petrol. 131 181–195.

    Article  Google Scholar 

  6. Behera B M, Thirukumaran V, Soni A, Mishra P K and Biswal T K 2017 Size distribution and roundness of clasts within pseudotachylytes of the Gangavalli Shear Zone, Salem, Tamil Nadu: An insight into its origin and tectonic significance; J. Earth Syst. Sci. 126 46.

    Article  Google Scholar 

  7. Behera B M, Waele B D, Thirukumaran V, Sundaralingam K, Narayanan S, Sivalingam B and Biswal T K 2019 Kinematics, strain pattern and geochronology of the Salem–Attur shear zone: Tectonic implications for the multiple sheared Salem–Namakkal blocks of the Southern Granulite terrane, India; Precamb. Res. 324 32–61.

    Article  Google Scholar 

  8. Benn K, Ham N M, Pignotta G S and Bleeker W 1998 Emplacement and deformation of granites during transpression: Magnetic fabrics of the Archean Sparrow pluton, Slave Province, Canada; J. Struct. Geol. 20 1247–1259.

    Article  Google Scholar 

  9. Berlenbach J W and Roering C 1992 Sheath-fold-like structures in pseudotachylytes; J. Struct. Geol. 14 847–856.

    Article  Google Scholar 

  10. Berthé D, Choukroune P and Jégouzo P 1979 Orthogneiss, mylonite and non-coaxial deformation of granites: The example of the South Armorican Shear Zone; J. Struct. Geol. 1 31–42.

    Article  Google Scholar 

  11. Bhadra B K 2000 Ductile shearing in Attur Shear Zone and its relation with Moyar Shear Zone, South India; Gondwana Res. 3 361–369.

    Article  Google Scholar 

  12. Bhadra S, Gupta S and Banerjee M 2004 Structural evolution across the Eastern Ghats Mobile Belt–Bastar craton boundary, India: Hot over cold thrusting in an ancient collision zone; J. Struct. Geol. 26 233–245.

    Article  Google Scholar 

  13. Bhadra S and Nasipuri P 2017 Tectonothermal evolution of a garnet-bearing quartzofeldspathic gneiss from the Moyar shear zone, south India and its bearing on the Neoarchean accretionary tectonics; Lithos 274–275 1–18.

    Article  Google Scholar 

  14. Bhaskar Rao Y J, Janardhan A S, Vijaya Kumar T, Narayana B L, Dayal A M, Taylor P N and Chetty T R K 2003 Sm–Nd model ages and Rb–Sr isotopic systematics of charnockites and gneisses across the Cauvery Shear Zone, Southern India: Implications for the Archean–Neoproterozoic Terrane Boundary in the Southern Granulite Terrain; Geol. Soc. India 50 297–317.

    Google Scholar 

  15. Biswal T K, Thirukumaran V, Ratre K, Bandyapadhaya K, Sundaralingam K and Mondal A K 2010 A study of mylonites from parts of the Salem–Attur shear zone (Tamil Nadu) and its tectonic implications; J. Geol. Soc. India 75 128–136.

    Article  Google Scholar 

  16. Borradaile G J and Jackson M 2004 Anisotropy of magnetic susceptibility (AMS): Magnetic petrofabrics of deformed rocks; Geol. Soc. London, Spec. Publ. 238 299–360.

    Article  Google Scholar 

  17. Bouchez J L 1977 Plastic deformation of quartzites at low temperature in an area of natural strain gradient; Tectonophys. 39 25–50.

    Article  Google Scholar 

  18. Chadima M, Hansen A, Hirt A M, Hrouda F and Siemes H 2004 Phyllosilicate preferred orientation as a control of magnetic fabric: Evidence from neutron texture goniometry and low and high-field magnetic anisotropy (SE Rhenohercynian Zone of Bohemian Massif); Geol. Soc. London, Spec. Publ. 238 361–380.

    Article  Google Scholar 

  19. Chadwick B, Vasudev V N and Hegde G V 2000 The Dharwar Craton, southern India, interpreted as the result of Late Archaean oblique convergence; Precamb. Res. 99 91–111.

    Article  Google Scholar 

  20. Chetty T R K 1996 Proterozoic shear zones in southern granulite terrain, India; In: The Archaean and Proterozoic Terrains in Southern India within East Gondwana (eds) Santosh M and Yoshida M, Gondwana Res. Group Memoir 3 77–89.

  21. Chetty T R K and Bhaskar Rao Y J 1996 The Cauvery shear zone in the Precambrian granulite terrain, South India: a case for westward thrusting; In: Proc. IGCP-368 Int. Field Workshop on Proterozoic Continental Crust of Southern India; Gondwana Res. Group Misc. 4 17–19.

  22. Chetty T R K 2015 The Cauvery Suture Zone: Map of structural architecture and recent advances; J. Geol. Soc. India 85 37–44.

    Article  Google Scholar 

  23. Collins A S, Santosh M, Braun I and Clark C 2007 Age and sedimentary provenance of the Southern Granulites, South India: U–Th–Pb SHRIMP secondary ion mass spectrometry; Precamb. Res. 155 125–138.

    Article  Google Scholar 

  24. Condie K C, Bowling G P and Allen P 1986 Origin of granites in an Archean high grade terrane, southern India; Contrib. Mineral. Petrol. 92 93–103.

    Article  Google Scholar 

  25. Connors K A and Lister G S 1995 Polyphase deformation in the western Mount Isa Inlier, Australia: Episodic or continuous deformation?; J. Struct. Geol. 17 305–328.

    Article  Google Scholar 

  26. Costa E and Vendeville B C 2002 Experimental insight on the geometry and kinematics of fold-and-thrust belts above weak, viscous evaporitic décollement; J. Struct. Geol. 24 1729–1739.

    Article  Google Scholar 

  27. Cotton J T and Koyi H A 2000 Modeling of thrust fronts above ductile and frictional detachments: Application to structures in the Salt Range and Potwar Plateau, Pakistan; Geol. Soc. Am. Bull. 112 351–363.

    Article  Google Scholar 

  28. Davis D and Engelder T 1985 The role of salt in fold-and-thrust belts; Tectonophys. 119 67–88.

    Article  Google Scholar 

  29. Drury A S A, Harris N B W and Holt R W 1984 Precambrian tectonics and crustal evolution in south India; J. Geol. 92 3–20.

    Article  Google Scholar 

  30. Dunlop D J and Özdemir Ö 1997 Rock magnetism: Fundamentals and frontiers; Cambridge University Press, Cambridge, 596p.

  31. Egydio-Silva M, Vauchez A, Raposo M I B, Bascou J and Uhlein A 2005 Deformation regime variations in an arcuate transpressional orogen (Ribeira belt, SE Brazil) imaged by anisotropy of magnetic susceptibility in granulites; J. Struct. Geol. 27 1750–1764.

    Article  Google Scholar 

  32. Fermor L L 1936 An attempt at correlation of the ancient schistose formations of peninsular India; Geol. Surv. India Mem. 70 217.

    Google Scholar 

  33. Friend C R L and Nutman A P 1992 Response of zircon U–Pb isotopes and whole-rock geochemistry to CO2 fluid-induced granulite-facies metamorphism, Kabbaldurga, Karnataka, South India; Contrib. Miner. Petrol. 111 299–310.

    Article  Google Scholar 

  34. Fossen H and Tikoff B 1993 The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression–transtension tectonics; J. Struct. Geol. 15 413–422.

    Article  Google Scholar 

  35. Ghosh S, Chakraborty S, Paul D K, Bhalla J K, Bishui P K and Gupta S N 1994 New Rb–Sr isotopic ages and geochemistry of granitoids from Meghalaya and their significance in middle- to late-Proterozoic crustal evolution; Indian Miner. 48 33–44.

  36. Ghosh S K 2001 Types of transpressional and transtensional deformation; Geol. Soc. Am. Mem. 193 1–20.

    Google Scholar 

  37. Ghosh J G, de Wit M J and Zartman R E 2004 Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies; Tectonics 23 1–38.

    Article  Google Scholar 

  38. Ghosh S, Bose S, Mandal N and Dasgupta S 2016 Dynamic recrystallization mechanisms and their transition in the Daling Thrust (DT) zone, Darjeeling–Sikkim Himalaya; Tectonophys. 674 166–181.

    Article  Google Scholar 

  39. Helmstaedt H and Dixon J M 1980 Superposed crenulation cleavages resulting from progressive deformation; Tectonophys. 66 115–126.

    Article  Google Scholar 

  40. Holdsworth R E 1990 Progressive deformation structures associated with ductile thrusts in the Moine Nappe, Sutherland, N. Scotland; J. Struct. Geol. 12 443–452.

    Article  Google Scholar 

  41. Hrouda F 1982 Magnetic anisotropy of rocks and its application in geology and geophysics; Geophys. Surv. 51 37–82.

    Article  Google Scholar 

  42. Hrouda F, Chlupáčová M and Mrázová Š 2006 Low-field variation of magnetic susceptibility as a tool for magnetic mineralogy of rocks; Phys. Earth Planet. Int. 154 323–336.

    Article  Google Scholar 

  43. Jain A K, Singh Sandeep and Manickavasagam R M 2003 Intracontinental shear zones in the Southern Granulite Terrain: Their kinematics and evolution; Geol. Soc. India 50 225–253.

    Google Scholar 

  44. Jayananda M, Moyen J F, Martin H, Peucat J J, Auvray B and Mahabaleswar B 2000 Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar Craton, southern India: Constraints from geochronology, Nd–Sr isotopes and whole-rock geochemistry; Precamb. Res. 99 225–254.

    Article  Google Scholar 

  45. Jayananda M, Peucat J J, Chardon D, Krishna Rao B, Fanning C M and Corfu F 2013a Neoarchean greenstone volcanism and continental growth, Dharwar Craton, southern India: Constraints from SIMS U-Pb zircon geochronology and Nd isotopes; Precamb. Res. 227 55–76.

    Article  Google Scholar 

  46. Jayananda M, Tsutsumi Y, Miyazaki T, Gireesh R V, Kapfo K U, Tushipokla, Hidaka H and Kano T 2013b Geochronological constraints on Meso- and Neoarchean regional metamorphism and magmatism in the Dharwar Craton southern India; J. Asian Earth Sci. 78 18–38.

    Article  Google Scholar 

  47. Jelinek V 1981 Characterization of the magnetic fabric of rocks; Tectonophys. 79 63–67.

    Article  Google Scholar 

  48. Jezek J and Hrouda F 2004 Determination of the orientation of magnetic minerals from the anisotropy of magnetic susceptibility; Geol. Soc. London, Spec. Publ. 238 9–20.

    Article  Google Scholar 

  49. Kratinová Z, Ježek J, Schulmann K, Hrouda F, Shail R K and Lexa O 2010 Noncoaxial K-feldspar and AMS subfabrics in the Land’s End granite, Cornwall: Evidence of magmatic fabric decoupling during late deformation and matrix crystallization; J. Geophys. Res. 115 B09104.

    Google Scholar 

  50. Kelsey D E 2008 On ultrahigh-temperature crustal metamorphism; Gondwana Res. 13 1–29.

  51. Koyi H A and Cotton J 2004 Experimental insights on the geometry and kinematics of fold-and-thrust belts above weak, viscous evaporitic décollement: A discussion; J. Struct. Geol. 26 2139–2143.

    Article  Google Scholar 

  52. Kutty T R N, Murthy S R N and Anantha Iyer G V 1986 REE geochemistry and petrogenesis of Chalk hills Salem; J. Geol. Soc. India 28 449–466.

    Google Scholar 

  53. Majumder S and Mamtani M A 2009 Magnetic fabric in the Malanjkhand Granite (central India) – implications for regional tectonics and Proterozoic suturing of the Indian shield; Phys. Earth Planet. Int. 172 310–323.

    Article  Google Scholar 

  54. Mamtani M A, Karanth R V and Greiling R O 1999 Are crenulation cleavage zones mylonites on the microscale?; J. Struct. Geol. 21 711–718.

    Article  Google Scholar 

  55. Mamtani M A and Greiling R O 2005 Granite emplacement and its relation with regional deformation in the Aravalli Mountain Belt (India) – inferences from magnetic fabric; J. Struct. Geol. 27 2008–2029.

    Article  Google Scholar 

  56. Mamtani M A, Piazolo S, Greiling R O, Kontny A and Hrouda F 2011 Process of magnetite fabric development during granite deformation; Earth Planet. Sci. Lett. 308 77–89.

    Article  Google Scholar 

  57. Mamtani M A 2014 Magnetic fabric as a vorticity gauge in syntectonically deformed granitic rocks; Tectonophys. 629 189–196.

    Article  Google Scholar 

  58. Marques F O 2008 Thrust initiation and propagation during shortening of a 2-layer model lithosphere; J. Struct. Geol. 30 29–38.

    Article  Google Scholar 

  59. Marshak S, Haq S S and Sen P 2019 Ramp initiation in fold-thrust belts: Insight from PIV analysis of sandbox models; J. Struct. Geol. 118 308–323.

    Article  Google Scholar 

  60. Massoli D, Koyi H A and Barchi M R 2006 Structural evolution of a fold and thrust belt generated by multiple décollements: Analogue models and natural examples from the Northern Apennines (Italy); J. Struct. Geol. 28 185–199.

    Article  Google Scholar 

  61. Montesi L G J and Zuber M T 2002 A unified description of localization for application to large-scale tectonics; J. Geophys. Res. 107.

  62. Montési L G J and Hirth G 2003 Grain-size evolution and the rheology of ductile shear zones: From laboratory experiments to post-seismic creep; Earth Planet. Sci. Lett. 211 97–110.

    Article  Google Scholar 

  63. Mondal T K 2018 Evolution of fabric in Chitradurga granite (south India) – A study based on microstructure, anisotropy of magnetic susceptibility (AMS) and vorticity analysis; Tectonophys. 723 149–161.

    Article  Google Scholar 

  64. Mukherji A, Chaudhuri A K and Mamtani M A 2004 Regional scale strain variations in banded iron formations of eastern India: Results from anisotropy of magnetic susceptibility studies; J. Struct. Geol. 26 2175–2189.

    Article  Google Scholar 

  65. Murthy S R N 1979 Petrology of ultramafic rocks Chalk hills, Salem, Tamil Nadu; Rec Geol. Surv. India 112 15–35.

    Google Scholar 

  66. Nasipuri P and Bhadra S 2013 Structural framework for the emplacement of the Bolangir anorthosite massif in the Eastern Ghats Granulite Belt, India: Implications for post-Rodinia pre-Gondwana tectonics; Miner. Petrol. 107 861–880.

    Article  Google Scholar 

  67. Nathan N P, Krishna Rao A V, Bhalla J K, Balasubramanian E B, Subramanian N, Oberoi L K, Natarajan V, Gopalakrishnan K and Raman R 1994 Geochemistry and geochronology of the pegmatoidal granite of Shankari–Tiruchengode area, Tamil Nadu; Indian Mineral. 48 113–122.

  68. Nishimiya Y, Tsunogae T, Santosh M, Dubessy J and Chetty T R K 2009 Prograde and retrograde hogbomites in sapphirine + quartz bearing Mg–Al rock from the Palghat–Cauvery Suture Zone, southern India; J. Miner. Petrol. Sci. 104 319–323.

    Article  Google Scholar 

  69. Pandey B K, Krishna V, Sastry D V L N, Chabria T, Mary K K and Dhanaraju R 1993 Pan-African wholerock Rb–Sr isochron ages for the granites and pegmatites of Kullampatti–Suriyamalai area, Salem District, Tamil Nadu, India; VI Nat. Symp. Mass spectrometry, Ind. Inst. Petroleum, Dehradun, Abstract volume, pp. 480–482.

  70. Passchier C W and Trouw R A J 2005 Microtectonics; 2nd edn, Springer, Berlin, 353p.

    Google Scholar 

  71. Paterson S R, Fowler T K, Schmidt K L, Yoshinobu A S, Yuan E S and Miller R B 1998 Interpreting magmatic fabric patterns in plutons; Lithos 44 53–82.

    Article  Google Scholar 

  72. Plavsa D, Collins A S, Foden J D and Clark C 2015 The evolution of a Gondwanan collisional orogen: A structural and geochronological appraisal from the Southern Granulite Terrane, South India; Tectonics 34 820–857.

    Article  Google Scholar 

  73. Pluijm B A V and Marshak S 2004 Earth structure: An introduction to structural geology and tectonics; 2nd edn, WW Norton, New York.

    Google Scholar 

  74. Poirier J P 1980 Shear localization and shear instability in materials in the ductile field; J. Struct. Geol. 2 135–142.

    Article  Google Scholar 

  75. Pokorný J, Suza P and Hrouda F 2004 Anisotropy of magnetic susceptibility of rocks measured in variable weak magnetic fields using the KLY-4S Kappabridge; Geol. Soc. London, Spec. Publ. 238 69–76.

    Article  Google Scholar 

  76. Raith M M, Srikantappa C, Buhl D and Köhler H 1999 The Nilgiri Enderbites, south India: Nature and age constraints on protolith formation, high-grade metamorphism and colling history; Precamb. Res. 98 129–150.

    Article  Google Scholar 

  77. Raith M M, Sengupta P, Kooijman E, Upadhyay D and Srikantappa C 2010 Corundum–leucosome-bearing aluminous gneiss from Ayyarmalai, Southern Granulite Terrain, India: A textbook example of vapor phase-absent muscovite melting in silica-undersaturated aluminous rocks; Am. Miner. 95 897–907.

    Article  Google Scholar 

  78. Rajesh H M 2007 The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains: A case study from southern India; Contrib. Miner. Petrol. 154 591–606.

    Article  Google Scholar 

  79. Rajesh H M and Santosh M 2004 Charnockitic magmatism in southern India; J. Earth Syst. Sci. 113 565–585.

    Article  Google Scholar 

  80. Ramakrishnan M 2003 Craton–mobile belt relations in Southern Granulite Terrain; In: Tectonics of Southern Granulite Terrain; Kuppam–Palani Geotransect (ed.) Ramakrishnan M, Geol. Surv. India Memoir 50 1–24.

  81. Ramakrishnan M and Vaidyanadhan R 2008 Geology of India; Geol. Soc. India 1 556.

  82. Ram Mohan M, Satyanarayanan M, Santosh M, Sylvester P J, Tubrett M and Lam R 2013 Neoarchean suprasubduction zone arc magmatism in southern India: Geochemistry, zircon U–Pb geochronology and Hf isotopes of the Sittampundi Anorthosite Complex; Gondwana Res. 23 539–557.

  83. Ramsay J G 1980 Shear zone geometry: A review; J. Struct. Geol. 2 83–99.

    Article  Google Scholar 

  84. Ramsay J G and Huber M L 1987 The techniques of modern structural geology, volume 1: strain analysis; Academic Press, London.

  85. Rao Y J B, Chetty T R K, Janardhan A S and Gopalan K 1996 Sm–Nd and Rb–Sr Ages and P–T history of the Archean-Sittampundi and Bhavani layered meta-anorthosite complexes in Cauvery Shear Zone, South India – Evidence for Neoproterozoic reworking of Archean crust; Contrib. Miner. Petrol. 125 237–250.

    Article  Google Scholar 

  86. Rao C V D, Santosh M, Sajeev K and Windley B F 2013 Chromite–silicate chemistry of the Neoarchean Sittampundi Complex, southern India: Implications for subduction-related arc magmatism; Precamb. Res. 227 259–275.

    Article  Google Scholar 

  87. Reddy B M, Janardhan A S and Peucat J J 1995 Geochemistry, age and origin of alkaline and ultramafic rocks of Salem, Tamil Nadu, South India; J. Geol. Soc. India 45 251–262.

    Google Scholar 

  88. Rochette P, Jackson M and Aubourg C 1992 Rock magnetism and the interpretation of magnetic susceptibility; Rev. Geophys. 30 209–226.

    Article  Google Scholar 

  89. Samuel V O, Santosh M, Liu S, Wang W and Sajeev K 2014 Neoarchean continental growth through arc magmatism in the Nilgiri Block, southern India; Precamb. Res. 245 146–173.

    Article  Google Scholar 

  90. Santosh M, Tanaka K, Yokoyama K and Collins A S 2005 Late Neoproterozoic–Cambrian felsic magmatism along transcrustal shear zones in southern India: U–Pb electron microprobe ages and implications for the amalgamation of the Gondwana supercontinent; Gondwana Res. 8 31–42.

  91. Santosh M, Maruyama S and Sato K 2009a Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India?; Gondwana Res. 16 321–341.

    Article  Google Scholar 

  92. Santosh M, Maruyama S and Yamamoto S 2009b The making and breaking of supercontinents: Some speculations based on superplumes, super downwelling and the role of tectosphere; Gondwana Res. 15 324–341.

  93. Santosh M, Xiao W J, Tsunogae T, Chetty T R K and Yellappa T 2012 The Neoproterozoic subduction complex in southern India: SIMS zircon U–Pb ages and implications for Gondwana assembly; Precamb. Res. 192–195 190–208.

    Article  Google Scholar 

  94. Santosh M, Shaji E, Tsunogae T, Ram Mohan M, Satyanarayanan M and Horie K 2013 Suprasubduction zone ophiolite from Agali hill: Petrology, zircon SHRIMP U–Pb geochronology, geochemistry and implications for Neoarchean plate tectonics in southern India; Precamb. Res. 231 301–324.

    Article  Google Scholar 

  95. Satheesh Kumar R and Prasannakumar V 2009 Fabric evolution in Salem–Attur Shear Zone, South India, and its implications on the kinematics; Gondwana Res. 16 37–44.

  96. Sato K, Santosh M and Tsunogae T 2009 A petrologic and laser Raman spectroscopic study of sapphirine–spinel–quartz–Mg–staurolite inclusions in garnet from Kumiloothu, southern India: Implications for extreme metamorphism in a collisional orogeny; J. Geodyn. 47 107–118.

    Article  Google Scholar 

  97. Sato K, Santosh M, Tsunogae T, Chetty T R K and Hirata T 2011a Subduction–accretion–collision history along the Gondwana suture in southern India: A laser ablation ICP-MS study of zircon chronology; J. Asian Earth Sci. 40 162–171.

    Article  Google Scholar 

  98. Sato K, Santosh M, Tsunogae T, Chetty T R K and Hirata T 2011b Laser ablation ICP mass spectrometry for zircon U–Pb geochronology of metamorphosed granite from the Salem Block: Implication for Neoarchean crustal evolution in southern India; J. Mineral. Petrol. Sci. 106 1–12.

    Article  Google Scholar 

  99. Sen K, Majumder S and Mamtani M A 2005 Degree of magnetic anisotropy as a strain intensity gauge in ferromagnetic granites; J. Geol. Soc. 162 583–586.

    Article  Google Scholar 

  100. Sen K and Mamtani M A 2006 Magnetic fabric, shape preferred orientation and regional strain in granitic rocks; J. Struct. Geol. 28 1870–1882.

    Article  Google Scholar 

  101. Shimpo M, Tsunogae T and Santosh M 2006 First report of garnet corundum rocks from southern India: Implications for prograde high pressure (eclogite-facies?) metamorphism; Earth Planet. Sci. Lett. 242 111–129.

    Article  Google Scholar 

  102. Sommaruga A 1999 Décollement tectonics in the Jura foreland fold-and-thrust belt; Mar. Pet. Geol. 16 111–134.

    Article  Google Scholar 

  103. Strayer L M and Hudleston P J 1997a Numerical modeling of fold initiation at thrust ramps; J. Struct. Geol. 19 551–566.

    Article  Google Scholar 

  104. Strayer L M and Hudleston P J 1997b Simultaneous folding and faulting and fold-thrust belt evolution: A distinct element model; Geol. Soc. Am.: Abs. Prog. 29 44.

  105. Subramaniam A 1956 Petrology of the Anorthosite-Gabbro Mass at Kadavur, Madras, India; Geol. Mag. 93 287–300.

    Article  Google Scholar 

  106. Sundaralingam K, Biswal T K and Thirukumaran V 2017 Strain analysis of the Salem-Attur shear zone of Southern Granulite Terrane around Salem, Tamil Nadu; J. Geol. Soc. India 89 5–11.

    Article  Google Scholar 

  107. Tarling D H and Hrouda F 1993 The magnetic anisotropy of rocks; Chapman and Hall, London, 217p.

    Google Scholar 

  108. Tobisch O and Paterson S R 1988 Analysis and interpretation of composite foliations in areas of progressive deformation; J. Struct. Geol. 10 745–754.

    Article  Google Scholar 

  109. Tomson J K, Bhaskar Rao Y J, Vijaya Kumar T and Mallikharjuna Rao J 2006 Charnockite genesis across the Archaean–Proterozoic terrane boundary in the South Indian Granulite Terrain: constraints from major-trace element geochemistry and Sr–Nd isotopic systematics; Gondwana Res. 10 115–127.

  110. Tsunogae T and Santosh M 2006 Spinel–sapphirine–quartz bearing composite inclusion within garnet from an ultrahigh-temperature pelitic granulite: Implications for metamorphic history and P–T path; Lithos 92 524–536.

    Article  Google Scholar 

  111. Vitale S and Mazzoli S 2010 Strain analysis of heterogeneous ductile shear zones based on the attitudes of planar markers; J. Struct. Geol. 32 321–329.

    Article  Google Scholar 

  112. Weijermars R 1991 The role of stress in ductile deformation; J. Struct. Geol. 13 1061–1078.

    Article  Google Scholar 

  113. Yellappa T, Chetty T R K, Tsunogae T and Santosh M 2010 The Manamedu Complex: Geochemical constraints on Neoproterozoic suprasubduction zone ophiolite formation within the Gondwana suture in southern India; J. Geodyn. 50 268–285.

    Article  Google Scholar 

  114. Yellappa T, Santosh M, Chetty T R K, Kwon S, Park C, Nagesh P, Mohanty D P and Venkatasivappa V 2012 A Neoarchean dismembered ophiolite complex from southern India: Geochemical and geochronological constraints on its suprasubduction origin; Gondwana Res. 21 246–265.

  115. Yellappa T and Rao J M 2018 Geochemical characteristics of Proterozoic granite magmatism from Southern Granulite Terrain, India: Implications for Gondwana; J. Earth Syst. Sci. 127 22.

    Article  Google Scholar 

Download references

Acknowledgements

The work was part of the doctoral dissertation of AC. AC acknowledges the Department of Earth Sciences, Pondicherry University for analytical and administrative support during his work. AC sincerely thanks Prof Manish Mamtani, Department of Geology and Geophysics, IIT Kharagpur, for his support during magnetic fabric analysis. The work was partially supported from SERB (New Delhi) research grant, grant-in-aid no. SERB/F/5928/2018–2019, to SB. Reviews and suggestions by Dr Tridib Kumar Mondal and an anonymous reviewer improved the manuscript considerably. Prof. Saibal Gupta is thanked for editorial handling.

Author information

Affiliations

Authors

Contributions

Subhadip Bhadra: Conceptualization, field work, acquisition of structural data, and manuscript preparation. Ananth C: Field work and acquisition of structural data, sample preparation, analytical works (AMS), data generation, manuscript preparation and revision.

Corresponding author

Correspondence to Subhadip Bhadra.

Additional information

Communicated by Saibal Gupta

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ananth, C., Bhadra, S. Origin and tectonic implications of a new Belur–Sarkar Nattar Mangalam–Udayapatti shear zone (BNUSZ), Salem Granulite Block, India: Insights from deformation and magnetic fabrics. J Earth Syst Sci 130, 218 (2021). https://doi.org/10.1007/s12040-021-01717-9

Download citation

Keywords

  • Salem Granulite Block
  • phyllonite
  • ductile shear zone
  • thrust initiation
  • AMS fabrics