Skip to main content

Demarcation of zones of neotectonic activity around regional faults: Morphometric analysis from the Wagad Highland, Kachchh, India

Abstract

The Kachchh province of India has witnessed several major earthquakes in the past 100 years. These earthquakes have reactivated major faults of the region and modified the landscape. Morphometric analysis of the Wagad Highland was carried out to assess the vulnerability of regional fracture patterns for neotectonic activities. The analysis of regional fractures (using hypsometric curves and rose diagrams) of the first order drainage brought out the presence of three major orientations, i.e., N005°, N025° and N075°. Five quantitative parameters, viz., mountain front sinuosity (Smf), asymmetry factor (AF), hypsometric integral (HI), the ratio of valley floor width to valley height (Vf), and sinuosity parameter (Sp) were combined to a common parameter, the index for relative active tectonics (IRAT), having four classes (very high, high, moderate and low). The intensity of the neotectonic activity decreases from Class 1 to Class 4. About 62% (~151 km2) of the total area (~244 km2) is under Class 1 and Class 2, out of which ~50% (~122 km2) is in the western part of the study area. Based on these IRAT classes, a major NE–SW lineament, passing through the center of the study area, was identified to be neotectonically more active.

Research Highlights

  • Drainage basin morphometry of the Wagad Highlands (Rapar), India was analysed.

  • Index for relative active tectonics (IRAT) supports very high neotectonic activity.

  • IRAT map provides demarcation of neotectonically active zones.

  • Seismicity in the Kachchh region is related to high strain along regional faults.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

References

  1. Aggarwal S K, Khan P K, Mohanty S P and Roumelioti Z 2016 Moment tensors, state of stress and their relation to faulting processes in Gujarat, western India; Phys. Chem. Earth 95 19–35, https://doi.org/10.1016/j.pce.2016.01.004.

    Article  Google Scholar 

  2. Azor A, Keller E A and Yeats R S 2002 Geomorphic indicators of active fold growth: South Mountain–Oak Ridge anticline, Ventura basin, southern California; Geol. Soc. Am. Bull. 114(6) 745–753, https://doi.org/10.1130/0016-7606(2002)114%3c0745:GIOAFG%3e2.0.CO;2.

    Article  Google Scholar 

  3. Bhattacharya F, Rastogi B K and Kothyari G C 2013 Morphometric evidence of seismicity around Wagad and Gedi Faults, eastern Kachchh, Gujarat; J. Geol. Soc. India 81(1) 113–121, https://doi.org/10.1007/s12594-013-0010-1.

    Article  Google Scholar 

  4. Bilham R 1999 Slip parameters for the Rann of Kachchh, India, 16 June 1819 earthquake quantified from contemporary accounts; In: Coastal Tectonics (eds) Stewart I S and Vita-Finzi C, Geol. Soc. London Spec. Publ. 146 295–318, https://doi.org/10.1144/GSL.SP.1999.146.01.18.

  5. Biscarini C, Di Francesco S, Ridolfi E and Manciola P 2016 On the simulation of floods in a narrow bending valley: The Malpasset dam-break case study; Water 8(11) 545.

    Article  Google Scholar 

  6. Bishop P 2007 Long-term landscape evolution: Linking tectonics and surface processes; Earth Surf. Proc. Land. 32(3) 329–365, https://doi.org/10.1002/esp.1493.

    Article  Google Scholar 

  7. Biswas S K 1981 Basin framework, paleo-environment and depositional history of the Mesozoic sediments of Kutch basin, western India; Quart. J. Geol. Min. Metall. Soc. India 53 56–85.

    Google Scholar 

  8. Biswas S K 1987 Regional tectonic framework, structure and evolution of the western marginal basins of India; Tectonophys. 135 307–327, https://doi.org/10.1016/0040-1951(87)90115-6.

    Article  Google Scholar 

  9. Biswas S K and Deshpande S V 1970 Geologic and tectonic maps of Kachchh; Bull. ONGC 7 115–116.

    Google Scholar 

  10. Booth-Rea G, Azañón J M, Azor A and García-Dueñas V 2004 Influence of strike-slip fault segmentation on drainage evolution and topography. A case study: The Palomares Fault Zone (southeastern Betics, Spain); J. Struct. Geol. 26(9) 1615–1632, https://doi.org/10.1016/j.jsg.2004.01.007.

  11. Bridge J S 2003 Rivers and floodplains-forms, processes and sedimentary record; Oxford, Blackwell Sci. Ltd., 504p.

  12. Brookfield M E 1998 The evolution of the great river systems of southern Asia during the Cenozoic India–Asia collision: Rivers draining southwards; Geomorphology 22(3–4) 285–312, https://doi.org/10.1016/S0169-555X(97)00082-2.

    Article  Google Scholar 

  13. Bull W B 1978 Geomorphic tectonic activity classes of the south front of the San Gabriel Mountains, California; Arizona, Geosciences Department, University of Arizona, Tucson.

  14. Bull W B 1991 Geomorphic responses to climatic change; Oxford, Oxford University Press, 326p.

  15. Bull W B 2007 Tectonic geomorphology of mountains: A new approach to paleoseismology; Wiley-Blackwell, Oxford, 328p.

    Book  Google Scholar 

  16. Bull W B and McFadden L D 1977 Tectonic geomorphology north and south of the Garlock fault, California; In: Geomorphology in arid regionse (ed.) Doehring D O, Proc. 8th Ann. Geomor. Symp., State University of New York, Binghampton, pp. 115–138.

  17. Centamore E, Ciccacci S, Del Monte M, Fredi P and Palmieri E L 1996 Morphological and morphometric approach to the study of the structural arrangement of northeastern Abruzzo (central Italy); Geomorphology 16(2) 127–137, https://doi.org/10.1016/0169-555X(95)00138-U.

    Article  Google Scholar 

  18. Charlton R 2007 Fundamentals of Fluvial Geomorphology; Routledge, London, 264p.

    Book  Google Scholar 

  19. Chen Y C, Sung Q and Cheng K Y 2003 Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: Tectonic implications based on stream-gradient and hypsometric analysis; Geomorphology 56(1–2) 109–137, https://doi.org/10.1016/S0169-555X(03)00059-X.

    Article  Google Scholar 

  20. Cloetingh S and Cornu T 2005 Surveys on environmental tectonics; Quat. Sci. Rev. 24(3–4) 235–240, https://doi.org/10.1016/j.quascirev.2004.07.012.

    Article  Google Scholar 

  21. Cox R T 1994 Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment; Geol. Soc. Am. Bull. 106(5) 571–581, https://doi.org/10.1130/0016-7606(1994)106%3c0571:AODBSA%3e2.3.CO;2.

    Article  Google Scholar 

  22. Cox R T, Van Arsdale R B and Harris J B 2001 Identification of possible Quaternary deformation in the northeastern Mississippi Embayment using quantitative geomorphic analysis of drainage–basin asymmetry; Geol. Soc. Am. Bull. 113(5) 615–624, https://doi.org/10.1130/0016-7606(2001)113%3c0615:IOPQDI%3e2.0.CO;2.

    Article  Google Scholar 

  23. De R, Gaonkar S G, Srirama B V, Ram S and Kayal J R 2003 Fault plane solutions of the January 26th, 2001 Bhuj earthquake sequence; J. Earth Syst. Sci. 112(3) 413–419, https://doi.org/10.1007/BF02709268.

    Article  Google Scholar 

  24. Demoulin A 1998 Testing the tectonic significance of some parameters of longitudinal river profiles: The case of the Ardenne (Belgium, NW Europe); Geomorphology 24(2–3) 189–208, https://doi.org/10.1016/S0169-555X(98)00016-6.

    Article  Google Scholar 

  25. Deshpande S V and Merh S S 1980 Mesozoic sedimentary model of Wagad hills, Kutch, western India; J. Geol. Soc. India 21(2) 75–83.

    Google Scholar 

  26. El Hamdouni R, Irigaray C, Fernández T, Chacón J and Keller E A 2008 Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain); Geomorphology 96(1) 150–173, https://doi.org/10.1016/j.geomorph.2007.08.004.

    Article  Google Scholar 

  27. England P and Molnar P 1990 Surface uplift, uplift of rocks, and exhumation of rocks; Geology 18(12) 1173–1177, https://doi.org/10.1130/0091-7613(1990)018%3c1173:SUUORA%3e2.3.CO;2.

    Article  Google Scholar 

  28. Friend P F and Sinha R 1993 Braiding and meandering parameters; Geol. Soc. London, Spec. Publ. 75(1) 105–111, https://doi.org/10.1144/GSL.SP.1993.075.01.05.

    Article  Google Scholar 

  29. Gahalaut V K, Gahalaut K, Dumka R K, Chaudhury P and Yadav R K 2019 Geodetic evidence of high compression across seismically active Kachchh paleorift, India; Tectonics 38 3097–3107, https://doi.org/10.1029/2019TC005496.

    Article  Google Scholar 

  30. Giaconia F, Booth-Rea G, Martínez-Martínez J M, Azañón J M, Pérez-Peña J V, Pérez-Romero J and Villegas I 2012 Geomorphic evidence of active tectonics in the Sierra Alhamilla (eastern Betics, SE Spain); Geomorphology 145 90–106, https://doi.org/10.1016/j.geomorph.2011.12.043.

    Article  Google Scholar 

  31. GSI 2003 Geological Quadrangle Map: Anjar Quadrangle, Gujarat; Geol. Surv. India, Kolkata.

  32. Guarnieri P and Pirrotta C 2008 The response of drainage basins to the late Quaternary tectonics in the Sicilian side of the Messina Strait (NE Sicily); Geomorphology 95(3–4) 260–273, https://doi.org/10.1016/j.geomorph.2007.06.013.

    Article  Google Scholar 

  33. Gupta H K, Harinarayana T, Kousalya M, Mishra D C, Mohan I, Purnachandra Rao N, Raju P S, Rastogi B K, Reddy P R and Sarkar D 2001a Bhuj earthquake of 26 January 2001; J. Geol. Soc. India 57 275–278.

    Google Scholar 

  34. Gupta H K, Rao N P, Rastogi B K and Sarkar D 2001b The deadliest intraplate earthquake; Science 291(5511) 2101–2102.

    Article  Google Scholar 

  35. Hack J T 1973 Stream-profile analysis and stream-gradient index; J. Res. US Geol. Surv. 1(4) 421–429.

    Google Scholar 

  36. Horacio J 2014 River sinuosity index: Geomorphological characterisation; CIREF and Wetlands International, Wageningen Technical Note 2 1–6.

  37. Hare P W and Gardner T W 1985 Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica; Tect. Geomor. 4 75–104.

    Google Scholar 

  38. Horton R E 1945 Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology; Geol. Soc. Am. Bull. 56 275–370, https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.

    Article  Google Scholar 

  39. Hovius N 2000 Macroscale process systems of mountain belt erosion. In: Geomorphology and Global Tectonics (ed.) Summerfield M A; Wiley, Chichester, pp. 77–105.

    Google Scholar 

  40. Huang X and Niemann J D 2006 An evaluation of the geomorphically effective event for fluvial processes over long periods; J. Geophys. Res. Earth Surf. 111 F03015, https://doi.org/10.1029/2006JF000477.

    Article  Google Scholar 

  41. Hürtgen J, Rudersdorf A, Grützner C and Reicherter K 2014 Morphotectonics of the Padul-Nigüelas fault zone, southern Spain; Ann. Geophys. 56(6) S0679, https://doi.org/10.4401/ag-6208.

    Article  Google Scholar 

  42. ISR 2013 Annual Report 2012-2013; Gandhinagar, Institute of Seismological Research, Gujarat.

  43. Keller E A 1986 Investigation of active tectonics: Use of surficial earth processes; In: Active Tectonics (ed.) Wallace R E, National Academic Press, Washington DC, pp. 136–147.

    Google Scholar 

  44. Keller E A and Pinter N 2002 Active Tectonics: Earthquakes, Uplift and Landscape; 2nd edn. Prentice Hall, New Jersey, 362p.

    Google Scholar 

  45. Keller E A, Seaver D B, Laduzinsky D L, Johnson D L and Ku T L 2000 Tectonic geomorphology of active folding over buried reverse faults: San Emigdio Mountain front, southern San Joaquin Valley, California; Geol. Soc. Am. Bull. 112(1) 86–97, https://doi.org/10.1130/0016-7606(2000)112%3c86:TGOAFO%3e2.0.CO;2.

    Article  Google Scholar 

  46. Khan P K, Mohanty S P, Sinha S and Singh D 2016 Occurrences of large-magnitude earthquakes in the Kachchh region, Gujarat, western India: Tectonic implications; Tectonophys. 679 102–116, https://doi.org/10.1016/j.tecto.2016.04.044.

    Article  Google Scholar 

  47. Kobor J S and Roering J J 2004 Systematic variation of bedrock channel gradients in the central Oregon Coast Range: Implications for rock uplift and shallow landsliding; Geomorphology 62(3–4) 239–256, https://doi.org/10.1016/j.geomorph.2004.02.013.

    Article  Google Scholar 

  48. Kothyari G C, Rastogi B K, Dumka R K and Chauhan M 2015 Secondary surface deformation along the Bharudia/North Wagad Fault Zone in Kachchh rift basin, western India; Comun. Geol. 102(1) 29–37.

    Google Scholar 

  49. Kothyari G C, Rastogi B K, Morthekai P and Dumka R K 2016a Landform development in a zone of active Gedi Fault, Eastern Kachchh rift basin, India; Tectonophys. 670 115–126, https://doi.org/10.1016/j.tecto.2015.12.027.

    Article  Google Scholar 

  50. Kothyari G C, Rastogi B K, Morthekai P, Dumka R K and Kandregula R S 2016b Active segmentation assessment of the tectonically active South Wagad fault in Kachchh, western Peninsular India; Geomorphology 253 491–507, https://doi.org/10.1016/j.geomorph.2015.10.029.

    Article  Google Scholar 

  51. Kothyari G C, Dumka R K, Singh A P, Chauhan G, Thakkar M G and Biswas S K 2016c Tectonic evolution and stress pattern of South Wagad Fault at the Kachchh Rift Basin in western India; Geol. Mag. 154(4) 875–887, https://doi.org/10.1017/S0016756816000509.

    Article  Google Scholar 

  52. Kumar G P, Kumar V, Nagar M, Singh D, Mahendar E, Patel P and Mahesh P 2017 Magnetotelluric impedance tensor analysis for identification of transverse tectonic feature in the Wagad uplift, Kachchh, northwest India; J. Earth Syst. Sci. 126(5) 68, https://doi.org/10.1007/s12040-017-0851-x.

    Article  Google Scholar 

  53. Larue J P 2008 Effects of tectonics and lithology on long profiles of 16 rivers of the southern Central Massif border between the Aude and the Orb (France); Geomorphology 93(3–4) 343–367, https://doi.org/10.1016/j.geomorph.2007.03.003.

    Article  Google Scholar 

  54. Leopold L B and Wolman M G 1957 River channel patterns: Braided, meandering, and straight; USGS Prof. Paper 282B 39–85.

    Google Scholar 

  55. Mahmood S A and Gloaguen R 2012 Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis; Geosci. Front. 3(4) 407–428, https://doi.org/10.1016/j.gsf.2011.12.002.

    Article  Google Scholar 

  56. Mallik J, Mathew G, Angerer T and Greiling R O 2008 Determination of directions of horizontal principal stress and identification of active faults in Kachchh (India) by electromagnetic radiation (EMR); J. Geodyn. 45 234–245, https://doi.org/10.1016/j.jog.2008.01.003.

    Article  Google Scholar 

  57. Mallik J, Mathew G and Greiling R O 2009 Magnetic fabric variations along the fault related anticlines of Eastern Kachchh, Western India; Tectonophys. 473 428–445, https://doi.org/10.1016/j.tecto.2009.03.026.

    Article  Google Scholar 

  58. Malik J N, Morino M, Mishra P, Bhuiyan C and Kaneko F 2008 First active fault exposure identified along Kachchh Mainland Fault: Evidence from trench excavation near Lodai village, Gujarat, Western India; J. Geol. Soc. India 71(2) 201, https://doi.org/10.11462/afr1985.2008.29_71.

  59. Malik J N, Gadhavi M S, Kothyari G C and Satuluri S 2017 Paleo-earthquake signatures from the South Wagad Fault (SWF), Wagad Island, Kachchh, Gujarat, western India: A potential seismic hazard; J. Struct. Geol. 95 142–159, https://doi.org/10.1016/j.jsg.2016.12.011.

    Article  Google Scholar 

  60. Mandal P, Chadha R K, Raju I P, Kumar N, Satyamurty C, Narsaiah R and Maji A 2007 Coulomb static stress variations in the Kachchh, Gujarat, India: Implications for the occurrences of two recent earthquakes (Mw = 5.6) in the 2001 Bhuj earthquake region; Geophys. J. Int. 169(1) 281–285, https://doi.org/10.1111/j.1365-246X.2006.03301.x.

  61. Maurya D M, Thakkar M G and Chamyal L S 2003 Implications of transverse fault system on tectonic evolution of Mainland Kachchh, western India; Curr. Sci. 85 661–667.

    Google Scholar 

  62. Mayer L 1990 Introduction to Quantitative Geomorphology: An Exercise Manual; Englewood, New Jersey, Prentice-Hall International, 380p.

  63. McCalpin J P and Thakkar M G 2003 2001 Bhuj–Kachchh earthquake: Surface faulting and its relation with neotectonics and regional structures, Gujarat, western India; Ann. Geophys. 46(5) 937–956.

    Google Scholar 

  64. Menéndez I, Silva P G, Martín-Betancor M, Pérez-Torrado F J, Guillou H and Scaillet S 2008 Fluvial dissection, isostatic uplift, and geomorphological evolution of volcanic islands (Gran Canaria, Canary Islands, Spain); Geomorphology 102(1) 189–203, https://doi.org/10.1016/j.geomorph.2007.06.022.

    Article  Google Scholar 

  65. Mishra D and Biswas S K 2009 Sedimentology, sequence stratigraphy and syn-rift model of younger part of Washtawa Formation and early part of Kanthkot Formation, Wagad, Kachchh basin, Gujarat; J. Geol. Soc. India 73(4) 519–527, https://doi.org/10.1007/s12594-009-0035-7.

    Article  Google Scholar 

  66. Moglen G E and Bras R L 1995 The effect of spatial heterogeneities on geomorphic expression in a model of basin evolution; Water Resour. Res. 31(10) 2613–2623, https://doi.org/10.1029/95WR02036.

    Article  Google Scholar 

  67. Mohanty S 2011 Crustal stress and strain patterns in the Indian plate interior: Implications for the deformation behaviour of a stable continent and its seismicity; Terra Nova 23 407–415, https://doi.org/10.1111/j.1365-3121.2011.01027.x.

    Article  Google Scholar 

  68. Mohanty S 2015 Seismotectonics of the Indian plate interior: Insights from geodetic strain patterns; J. Eng. Geol. Spec. Publ. October 2015 1175–1181.

  69. Molin P, Pazzaglia F J and Dramis F 2004 Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila massif, Calabria, southern Italy; Am. J. Sci. 304(7) 559–589, https://doi.org/10.2475/ajs.304.7.559.

    Article  Google Scholar 

  70. Morino M, Malik J N, Ansari K, Bhuiyan C, Mishra P and Kaneko F 2008 Active low-angle reverse fault and wide Quaternary deformation identified in Jhura trench across the Kachchh Mainland Fault, Kachchh, Gujarat, India; Act. Fault Res. 2008(29) 71–78, https://doi.org/10.11462/afr1985.2008.29_71.

  71. Pandey D K, Alberti M and Fürsich F T 2013 Ammonites from the Oxfordian (Bifurcatus Zone) strata of Gangta Bet, Kachchh, western India; J. Palaeontol. Soc. India 58(2) 139–174.

    Google Scholar 

  72. Pedrera A, Pérez-Peña J V, Galindo-Zaldívar J, Azañón J M and Azor A 2009 Testing the sensitivity of geomorphic indices in areas of low-rate active folding (eastern Betic Cordillera, Spain); Geomorphology 105(3–4) 218–231, https://doi.org/10.1016/j.geomorph.2008.09.026.

    Article  Google Scholar 

  73. Pérez-Peña J V, Azañón J M, Azor A, Tuccimei P, Della Seta M and Soligo M 2009a Quaternary landscape evolution and erosion rates for an intramontane Neogene basin (Guadix–Baza basin, SE Spain); Geomorphology 106(3–4) 206–218, https://doi.org/10.1016/j.geomorph.2008.10.018.

    Article  Google Scholar 

  74. Pérez-Peña J V, Azañón J M and Azor A 2009b CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain; Comput. Geosci. 35(6) 1214–1223, https://doi.org/10.1016/j.cageo.2008.06.006.

  75. Pérez-Peña J V, Azor A, Azañón J M and Keller E A 2010 Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis; Geomorphology 119(1–2) 74–87, https://doi.org/10.1016/j.geomorph.2010.02.020.

    Article  Google Scholar 

  76. Pike R J and Wilson S E 1971 Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis; Geol. Soc. Am. Bull. 82(4) 1079–1084, https://doi.org/10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2.

    Article  Google Scholar 

  77. Prizomwala S P, Das A, Chauhan G, Solanki T, Basavaiah N, Bhatt N, Thakkar M G and Rastogi B K 2016a Late Pleistocene–Holocene uplift driven terrace formation and climate-tectonic interplay from a seismically active intraplate setting: An example from Kachchh, western India; J. Asian Earth Sci. 124 55–67, https://doi.org/10.1016/j.jseaes.2016.04.013.

    Article  Google Scholar 

  78. Prizomwala S P, Solanki T, Chauhan G, Das A, Bhatt N, Thakkar M G and Rastogi B K 2016b Spatial variations in tectonic activity along the Kachchh Mainland Fault, Kachchh, western India: Implications in seismic hazard assessment; Nat. Hazards 82(2) 947–961, https://doi.org/10.1007/s11069-016-2228-x.

    Article  Google Scholar 

  79. Raj R 2012 Active tectonics of NE Gujarat (India) by morphometric and morphostructural studies of Vatrak River basin; J. Asian Earth Sci. 50 66–78, https://doi.org/10.1016/j.jseaes.2012.01.010.

    Article  Google Scholar 

  80. Rajendran K, Rajendran C P, Thakkar M and Tuttle M P 2001 The 2001 Kutch (Bhuj) earthquake: Coseismic surface features and their significance; Curr. Sci. 80(11) 1397–1405.

    Google Scholar 

  81. Rastogi B K 2001 Ground deformation study of Mw 7.7 Bhuj earthquake of 2001; Episodes 24(3) 160–165, https://doi.org/10.18814/epiiugs/2001/v24i3/002.

  82. Rastogi B K 2004 Damage due to the Mw 7.7 Kutch, India earthquake of 2001; Tectonophys. 390(1–4) 85–103, https://doi.org/10.1016/j.tecto.2004.03.030.

  83. Rastogi B K and Rao K M 2006 Seminar on ‘Paleoseismology and Active Faults’, Ann. Rep. Institute of Seismological Research, Gandhinagar, pp. 35–36.

  84. Ramirez-Herrera M T 1998 Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt; Earth Surf. Proc. Land. 23(4) 317–332, https://doi.org/10.1002/(SICI)1096-9837(199804)23:4%3c317::AID-ESP845%3e3.0.CO;2-V.

    Article  Google Scholar 

  85. Rhea S 1993 Geomorphic observations of rivers in the Oregon Coast Range from a regional reconnaissance perspective; Geomorphology 6(2) 135–150, https://doi.org/10.1016/0169-555X(93)90043-2.

    Article  Google Scholar 

  86. Schumm S A 1993 River response to base level change: Implications for sequence stratigraphy; J. Geol. 101(2) 279–294, https://doi.org/10.1086/648221.

    Article  Google Scholar 

  87. Schumm S A, Dumont J F and Holbrook J M 2002 Active Tectonics and Alluvial Rivers; Cambridge University Press, Cambridge, 276p.

    Google Scholar 

  88. Seeber L and Gornitz V 1983 River profiles along the Himalayan arc as indicators of active tectonics; Tectonophys. 92(4) 335–367, https://doi.org/10.1016/0040-1951(83)90201-9.

    Article  Google Scholar 

  89. Sharma G, Champati Ray P K and Mohanty S 2018 Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India; Geomorphology 301 108–120, https://doi.org/10.1016/j.geomorph.2017.11.002.

  90. Silva P G, Goy J L, Zazo C and Bardají T 2003 Fault-generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity; Geomorphology 50(1–3) 203–225, https://doi.org/10.1016/S0169-555X(02)00215-5.

    Article  Google Scholar 

  91. Sinha S and Mohanty S 2012 Spatial variation of crustal strain in the Kachchh region, India: Implication on the Bhuj earthquake of 2001; J. Geodyn. 61 1–11, https://doi.org/10.1016/j.jog.2012.07.003.

    Article  Google Scholar 

  92. Snow R S and Slingerland R L 1990 Stream profile adjustment to crustal warping: Nonlinear results from a simple model; J. Geol. 98(5) 699–708, https://doi.org/10.1086/629434.

    Article  Google Scholar 

  93. Strahler A N 1952 Hypsometric (area-altitude) analysis of erosional topography; Geol. Soc. Am. Bull. 63(11) 1117–1142, https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.

    Article  Google Scholar 

  94. Walcott R C and Summerfield M A 2008 Scale dependence of hypsometric integrals: An analysis of southeast African basins; Geomorphology 96(1–2) 174–186, https://doi.org/10.1016/j.geomorph.2007.08.001.

    Article  Google Scholar 

  95. Willgoose G and Hancock G 1998 Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment; Earth Surf. Proc. Land. 23(7) 611–623, https://doi.org/10.1002/(SICI)1096-9837(199807)23:7%3c611::AID-ESP872%3e3.0.CO;2-Y.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded through the Department of Science and Technology, Government of India project on ‘Geodynamics and Structural Evolution of Kachchh Province’ (No. SR/S4/ES-639/2012 dated 17th June 2013). Free access to SRTM data was provided by USGS Earth Explorer interface (https://earthexplorer.usgs.gov/). The authors are thankful to the reviewers for their constructive suggestions.

Author information

Affiliations

Authors

Contributions

Siba Sundar Sahu: Carried out visualization of the problem, data digitization, data analysis, data interpretation, field validation and manuscript preparation. Sarada P Mohanty: Developed the concept and carried out field investigation, supervision and manuscript review and editing.

Corresponding author

Correspondence to Sarada P Mohanty.

Additional information

Communicated by Saibal Gupta

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahu, S.S., Mohanty, S.P. Demarcation of zones of neotectonic activity around regional faults: Morphometric analysis from the Wagad Highland, Kachchh, India. J Earth Syst Sci 130, 219 (2021). https://doi.org/10.1007/s12040-021-01716-w

Download citation

Keywords

  • Neotectonic activity
  • tectonic geomorphology
  • morphometric analysis
  • Wagad Highlands