Skip to main content

Shoreline change along Odisha coast using statistical and geo-spatial techniques

Abstract

The historical shoreline change from 1978 to 2017 along Odisha coast are studied using toposheet, time-series Landsat, Indian Remote Sensing satellite data, and observed data. Shoreline change at south Odisha coast, Puri, Konark, Paradip and Pentha at different epochs (3–12 yrs) during 1978–2017 shows distinct spatio-temporal variability, which is discussed in relation to cyclonic storms and coastal structures associated with ports and harbours. The study also generated a long-term (1978–2017) shoreline change statistics (EPR, LRR, SCE and NSM) using Digital Shoreline Analysis System (DSAS) at every 500 m interval for the five zones of Odisha coast covering 425 km, identified the hotspots of erosion and accretion and divided the shoreline into five different classes of erosion and accretion. Identified lengths of shoreline with high erosion, low erosion, stable, low accretion and high accretion are respectively, 257.1, 92.2, 25.5, 10.2 and 40 km, based on LRR. The results indicate that erosion is predominant along Odisha coast. Zone-D (Paradip to Pentha) with highest percentage of high erosion is most vulnerable, while Zone-E (Pentha–Balasore) with highest percentage of accretion is least vulnerable. Zone-B (Chilika to Konark) with lowest percentage of high erosion and no high accretion is stable.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Acar U, Bayram B, Sanli F B, Abdikan S, Sunar F and Cetin H I 2012 An algorithm for coastline detection using SAR images; Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIX-B3 457–460, https://doi.org/10.5194/isprsarchives-XXXIX-B3-457-2012.

  2. Acharyya T, Mishra M and Kar D 2020 Rapid impact assessment of extremely severe cyclonic storm Fani on morpho-dynamics & ecology of Chilika Lake, Odisha, India; J. Coast. Conserv. 24 37, https://doi.org/10.1007/s11852-020-00754-8.

    Article  Google Scholar 

  3. Albert P and Jorge G 1998 Coastal changes in the Ebro delta: Natural and human factors; J. Coast. Conserv. 4 17–26.

    Article  Google Scholar 

  4. Al-Tahir R and Ali A 2004 Assessing land cover changes in the coastal zone using aerial photography; Surv. Land Inform. Sci. 64(2) 107–112, https://www.researchgate.net/publication/279583167_Assessing_Land_Cover_Changes_in_the_Coastal_Zone_Using_Aerial_Photography.

  5. Baig M R I, Ahmad I A, Shahfahad Tayyab M and Rahman A 2020 Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: An application of digital shoreline analysis system (DSAS); Ann. GIS 26(4) 361–376.

    Article  Google Scholar 

  6. Baral R, Pradhan S, Samal R N and Mishra S K 2018 Shoreline change analysis at Chilika lagoon coast, India using digital shoreline analysis system; J. Indian Soc. Remote Sens. 46(10) 1637–1644, https://doi.org/10.1007/s12524-018-0818-7.

    Article  Google Scholar 

  7. Barik S K, Mohanty P K, Kar P K, Behera B and Patra S K 2014 Environmental cues for mass nesting of sea turtles; Ocean Coast. Manag. 95 233–240, https://doi.org/10.1016/j.ocecoaman.2014.04.018.

    Article  Google Scholar 

  8. Barik K K, Annaduari R, Mohanty P C, Mahendra R S, Tripathy J K and Mitra D 2019 Statistical assessment of long-term shoreline changes along the Odisha Coast; Indian J. Geo-Mar. Sci. (IJMS) 48(12) 1990–1998, http://nopr.niscair.res.in/handle/123456789/52790.

  9. Bera R and Maiti R 2019 Quantitative analysis of erosion and accretion (1975–2017) using DSAS – A study on Indian Sundarbans; Region. Stud. Mar. Sci. 28 100583, https://doi.org/10.1016/j.rsma.2019.100583.

    Article  Google Scholar 

  10. Boak E H and Turner I L 2005 Shoreline definition and detection: A review; J. Coast. Res. 214 688–703, https://doi.org/10.2112/03-0071.1.

    Article  Google Scholar 

  11. Burningham H and French J 2017 Understanding coastal change using shoreline trend analysis supported by cluster-based segmentation; Geomorphology 282 131–149, https://doi.org/10.1016/j.geomorph.2016.12.029.

    Article  Google Scholar 

  12. Carter R W G 1988 Coastal environments: An introduction to the physical, ecological and cultural systems of coastlines; Academic Press, London.

    Google Scholar 

  13. Castelle B, Bujan S, Ferreira S and Dodet G 2017 Foredune morphological changes and beach recovery from the extreme 2013/2014 winter at a high-energy sandy coast; Mar. Geol. 385 41–55, https://doi.org/10.1016/j.margeo.2016.12.006.

    Article  Google Scholar 

  14. Chauhan O S 1995 Monsoon-induced temporal changes in beach morphology and associated sediment dynamics, central east coast of India; J. Coast. Res. 11 776–787, https://www.jstor.org/stable/4298380.

  15. Chen L C and Rau J Y 1998 Detection of shoreline changes for tideland areas using multi-temporal satellite images; Int. J. Remote Sens. 19(17) 3383–3397, https://doi.org/10.1080/014311698214055.

    Article  Google Scholar 

  16. Chenthamil Selvan S, Kankara R S and Rajan B 2014 Assessment of shoreline changes along Karnataka coast, India using GIS & remote sensing techniques; Indian J. Geo-Mar. Sci. 43(7) 1286–1291, http://nopr.niscair.res.in/bitstream/123456789/34441/1/IJMS%2043%287%29%201286-1291.pdf.

  17. Chittibabu P, Dube S K, Macnabb J B, Murty T S, Rao A D, Mohanty U C and Sinha P C 2004 Mitigation of Flooding and Cyclone Hazard in Orissa, India; Nat. Hazards 31 455–485, https://doi.org/10.1023/B:NHAZ.0000023362.26409.22.

    Article  Google Scholar 

  18. Church J A, Clark P U, Cazenave A, Gregory J M, Jevrejeva S, Levermann A, Merrifield M A, Milne G A, Nerem R S, Nunn P D, Payne A J, Pfeffer W T, Stammer D and Unnikrishnan A S 2013 Sea Level Change; In: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds) Stocker T F, Qin D, Plattner G-K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V and Midgley P M, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.026.

  19. Ciritci D and Türk T 2019 Automatic detection of shoreline change by Geographical Information System (GIS) and remote sensing in the Göksu Delta, Turkey; J. Indian Soc. Remote Sens. 47 233–243, https://doi.org/10.1007/s12524-019-00947-1.

    Article  Google Scholar 

  20. Cooper J A G, Jackson D W T, Navas F, McKenna J and Malvarez G 2004 Identifying storm impacts on an embayed, high-energy coastline: Examples from western Ireland; Mar. Geol. 210 261–280, https://doi.org/10.1016/j.margeo.2004.05.012.

    Article  Google Scholar 

  21. DCC 2009 Climate change risks to Australia’s coast: A first pass national assessment; Department of Climate Change, Canberra, https://www.environment.gov.au/system/files/resources/fa553e97-2ead-47bb-ac80-c12adffea944/files/cc-risks-full-report.pdf.

  22. Debernard J B and Røed L P 2008 Future wind, wave and storm surge climate in the Northern Seas: A revisit; Tellus A: Dyn. Meteorol. Oceanogr. 60 427–438, https://doi.org/10.1111/j.1600-0870.2008.00312.x.

    Article  Google Scholar 

  23. Dereli M A and Tercan E 2020 Assessment of shoreline changes using historical satellite images and geospatial analysis along the Lake Salda in Turkey; Earth Sci. Inform. 13 709–718, https://doi.org/10.1007/s12145-020-00460-x.

    Article  Google Scholar 

  24. Elmoustapha A O, Levoy F, Manfort O and Koutitonsky V G 2007 A numerical forecast of shoreline evolution after harbour construction in Nouakchott, Mauritania; J. Coast. Res. 236 1409–1417, https://doi.org/10.2112/04-0423.1.

    Article  Google Scholar 

  25. Fagherazzi S and Wiberg P L 2009 Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins; J. Geophys. Res. 114 F03022, https://doi.org/10.1029/2008JF001139.

    Article  Google Scholar 

  26. Fitzgerald D M, Fenster M S, Argow B A and Buynevich I V 2008 Coastal impacts due to sea-level rise; Ann. Rev. Earth Planet. Sci. 36 601–647, https://doi.org/10.1146/annurev.earth.35.031306.140139.

    Article  Google Scholar 

  27. Fletcher C H, Romine B M, Genz A S, Barbee M M, Dyer M, Anderson T R, Lim S C, Vitousek S, Bochicchio C and Richmond B M 2012 National assessment of shoreline change: Historical shoreline change in the Hawaiian Islands; U.S. Geological Survey Open-File Report 2011–1051, 55p, https://pubs.usgs.gov/of/2011/1051/pdf/ofr2011-1051_report_508.pdf.

  28. Genz A S, Fletcher C H, Dunn R A, Frazer L N and Rooney J J 2007 The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui, Hawaii; J. Coast. Res. 23(1) 87–105, https://www.jstor.org/stable/4300408.

  29. Hulme M, Jenkins G J, Lu X, Turnpenny J R, Mitchell T D, Jones R G, Lowe J, Murphy J M, Hassell D, Boorman P, McDonald R and Hill S 2002 Climate change scenarios for the United Kingdom: The UKCIP02 scientific report. Tyndall Centre for Climate Change Research, School of Environmental Sciences. Norwich, UK: University of East Anglia, 120p, https://www.academia.edu/2986789/Climate_Change_Scenarios_for_the_United_Kingdom_The_UKCIP02_Scientific_Report.

  30. ICZMP 2017 Coastal protection measure for control of coastal erosion at Pentha in Kendrapara district, Odisha, Department of Water Resources, Government of Odisha. http://old.cwc.gov.in/CPDAC-Website/CPDAC%20Meeting/15th%20Meeting/ Presentation/19_PPT_PENTHA_Odisha_CPDAC_AUG%2017.pdf.

  31. ICMZP 2020 Detailed Project Report, Water resource Department, Odisha; http://www.iczmpodisha.org/Detail%20Project%20Reports/Water%20Resource%20Department_Draft.pdf.

  32. Iwasaki S 2016 Linking disaster management to livelihood security against tropical cyclones: A case study on Odisha state in India; Int. J. Disaster Risk Reduction 19 57–63, https://doi.org/10.1016/j.ijdrr.2016.08.019.

    Article  Google Scholar 

  33. Jangir B, Satyanarayana A N V, Swati S, Jayaram C, Chowdary V M and Dadhwal V K 2016 Delineation of spatio-temporal changes of shoreline and geomorphological features of Odisha coast of India using remote sensing and GIS techniques; Nat. Hazards 82 1437–1455, https://doi.org/10.1007/s11069-016-2252-x.

    Article  Google Scholar 

  34. Kaas E, Andersen U, Flather R A, Willimas J A, Blackman D L, Lionello P, Dalan F, Elvini E, Nizzero A, Malguzzi P, Pfizenmayer A, von Storch H, Dillingh D, Phillipart M, de Ronde J, Reistad M, Midtbø K H, Vignes O, Haakenstad H, Hackett B, Fossum I and Sidselrud L 2001 Synthesis of the STOWASUS-2100 project: Regional storm, wave and surge scenarios for the 2100 century, Danish Climate Centre Report 01–3, 27p, https://www.dmi.dk/fileadmin/Rapporter/DKC/Dkc01-3.pdf.

  35. Kaliraj S, Chandrasekar N and Magesh N S 2013 Impacts of wave energy and littoral currents on shoreline erosion/accretion along the south-west coast of Kanyakumari, Tamil Nadu using DSAS and geospatial technology; Environ. Earth Sci. 71(10) 4523–4542, https://doi.org/10.1007/s12665-013-2845-6.

    Article  Google Scholar 

  36. Kankara R S, Selvan S C, Markose V J, Rajan B and Arockiaraj S 2015 Estimation of long and short term shoreline changes along Andhra Pradesh coast using Remote Sensing and GIS techniques; Proc. Eng. 116 855–862, https://doi.org/10.1016/j.proeng.2015.08.374.

    Article  Google Scholar 

  37. Kar P K, Mohanty P K, Barik S K and Behera B 2017 Shoreline change: A study along South Odisha coast using statistical and. geospatial technique; Int. Res. J. Earth Sci. 5(1) 1–7, http://www.isca.in/EARTH_SCI/Archive/v5/i1/1.ISCA-IRJES-2017-002.pdf.

  38. Kar P K, Mohanty P K and Behera B 2019 Shoreline change associated with coastal structures at Gopalpur port, Odisha, East Coast of India; In: Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018) (eds) Murali K, Sriram V, Samad A and Saha N, Lecture Notes in Civil Engineering 23 535–547, Springer, Singapore, https://doi.org/10.1007/978-981-13-3134-3_40.

  39. Kirk R M 1975 Coastal changes at Kaikoura, 1942–1974, determined from air photographs, New Zealand; J. Geol. Geophys. 18(6) 787–801, https://doi.org/10.1080/00288306.1975.10423528.

    Article  Google Scholar 

  40. Leont’yev I O, 2007 Changes in the shoreline caused by coastal structures; Oceanology 47 877–883, https://doi.org/10.1134/S0001437007060124.

    Article  Google Scholar 

  41. Mahala B K, Nayak B K and Mohanty P K 2015 Impacts of ENSO and IOD on tropical cyclone activity in the Bay of Bengal; Nat. Hazards 75 1105–1125, https://doi.org/10.1007/s11069-014-1360-8.

    Article  Google Scholar 

  42. Mahapatra M, Ratheesh R and Rajawat A S 2014 Shoreline change analysis along the coast of South Gujarat, India, using digital shoreline analysis system; J. Indian Soc. Remote Sens. 42 869–876, https://doi.org/10.1007/s12524-013-0334-8.

    Article  Google Scholar 

  43. Manca E, Pascucci V, Deluca M, Cossu A and Andreucci S 2013 Shoreline evolution related to coastal development of a managed beach in Alghero, Ardinia, Italy; Ocean. Coast. Manag. 85(A) 65–76, https://doi.org/10.1016/j.ocecoaman.2013.09.008.

  44. Markose V J, Rajan B, Kankara R S, Selvan S C and Dhanalakshmi S 2016 Quantitative analysis of temporal variations on shoreline change pattern along Ganjam district, Odisha, east coast of India; Environ. Earth Sci. 75(10) 929, https://doi.org/10.1007/s12665-016-5723-1.

    Article  Google Scholar 

  45. Mishra P, Mohanty P K, Murty A S N and Sugimoto T 2001 Beach profile studies near an artificial open coast port along South Orissa, east coast of India; J. Coast. Res. 34 164–171, https://www.jstor.org/stable/25736285.

  46. Mishra P, Patra S K, Ramana Murthy M V, Mohanty P K and Panda U S 2011 Interaction of monsoonal wave, current and tide near Gopalpur, east coast of India and their impact on beach profile: A case study; Nat. Hazards 59(2) 1145–1159, https://doi.org/10.1007/s11069-011-9826-4.

    Article  Google Scholar 

  47. Mishra M, Chand P, Pattnaik N, Kattel D B, Panda G K, Mohanti M, Baruah U D, Chandniha S K, Achary S and Mohanty T 2019 Response of long- to short-term changes of the Puri coastline of Odisha (India) to natural and anthropogenic factors: A remote sensing and statistical assessment; Environ. Earth Sci. 78 338, https://doi.org/10.1007/s12665-019-8336-7.

    Article  Google Scholar 

  48. Mishra M, Acharyya T, Chand P, Santos C A G, Kar D, Das P P, Pattnaik N, Silva R M D and Nascimento T V M D 2021 Analyzing shoreline dynamicity and the associated socio-ecological risk along the southern Odisha Coast of India using remote sensing-based and statistical approaches; Geocarto Int., https://doi.org/10.1080/10106049.2021.1882005.

    Article  Google Scholar 

  49. Mohanty U C and Gupta A 2002 Tropical cyclone understanding and prediction; In: Lecture Notes of the Workshop on Forecasting and mitigation of meteorological disasters: Tropical cyclones, floods and droughts, 13–14 February, pp 33–48.

  50. Mohanty P K, Panda U S, Pal S R and Mishra P K 2008 Monitoring and management of environmental changes along the Orissa coast; J. Coast. Res. 24(2B) 13–27, https://doi.org/10.2112/04-0255.1.

    Article  Google Scholar 

  51. Mohanty P K, Patra S K, Bramha S, Seth B, Pradhan U, Behera B, Mishra P and Panda U S 2012 Impact of groins on beach morphology: A case study near Gopalpur Port, east coast of India; J. Coast. Res. 28(1) 132–142, https://doi.org/10.2112/JCOASTRES-D-10-00045.1.

    Article  Google Scholar 

  52. Mohanty P K, Barik S K, Kar P K, Behera B and Mishra P 2015 Impact of ports on shoreline change along Odisha coast; Proc. Eng. 116 647–654, https://doi.org/10.1016/j.proeng.2015.08.339.

    Article  Google Scholar 

  53. Mohanty P K, Kar P K and Behera B 2020 Impact of very severe cyclonic storm Phailin on shoreline change along South Odisha Coast; Nat. Hazards 102 633–644, https://doi.org/10.1007/s11069-019-03610-7.

    Article  Google Scholar 

  54. Morton R A 1996 Geoindicators of coastal wetlands and shorelines; In: Geoindicators: Assessing rapid environmental changes in earth systems(eds) Berger A R and Iams W J, Rotterdam, A.A. Balkema, pp. 207–230.

  55. Mujabar P S and Chandrasekar N 2013 Shoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GIS; Arabian J. Geosci. 6(3) 647–664, https://doi.org/10.1007/s12517-011-0394-4.

    Article  Google Scholar 

  56. Mukhopadhyay A, Mukherjee S, Mukherjee S, Ghosh S, Hazra S and Mitra D 2012 Automatic shoreline detection and future prediction: A case study on Puri Coast, Bay of Bengal, India; Eur. J. Remote Sens. 45(1) 201–213, https://doi.org/10.5721/EuJRS20124519.

    Article  Google Scholar 

  57. Murali R M, Shrivastava D and Vethamony P 2009 Monitoring shoreline environment of Paradip, east coast of India using remote sensing; Curr. Sci. 97(1) 79–84, https://pdfs.semanticscholar.org/78a2/a3aa12d65a5c6cbfbfe102cd542991b639cc.pdf?_ga=2.116132806.1587345986.1597360084-901054806.1597360084.

  58. Murali R M, Dhiman R, Choudhary R, Seelam J K, Ilangovan D and Vethamony P 2015 Decadal shoreline assessment using remote sensing along the central Odisha coast, India; Environ. Earth Sci. 74(10) 7201–7213, https://doi.org/10.1007/s12665-015-4698-7.

    Article  Google Scholar 

  59. Nayak B U 1980 Coastal erosion in India – causes, processes and remedial measures; Geotechnology 80 55–83.

    Google Scholar 

  60. Nayak S 2002 Use of coastal data in coastal mapping; Indian Carto. CMMC, pp. 147–156.

  61. Neumann B, Vafeidis A T, Zimmermann J and Nicholls R J 2015 Future coastal population growth and exposure to sea-level rise and coastal flooding – A global assessment; PLoS ONE 10(3) e0118571, https://doi.org/10.1371/journal.pone.0118571.

    Article  Google Scholar 

  62. Nicholls R J, Hanson S E, Lowe J A, Warrick R A, Lu X and Long A J 2014 Sea-level scenarios for evaluating coastal impacts; Wiley Interdisciplinary Reviews: Climate Change 5(1) 129–150.

    Google Scholar 

  63. Nithu Raj, Gurugnanam B, Sudhakar V and Glitson Francis P 2019 Estuarine shoreline change analysis along the Ennore river mouth, southeast coast of India, using digital shoreline analysis system; Geod. Geodyn. 10(3) 205–212, https://doi.org/10.1016/j.geog.2019.04.002.

  64. Oyedotun T D T, Ruiz-Luna A and Navarro-Hernández A G 2018 Contemporary shoreline changes and consequences at a tropical coastal domain; Geol. Ecol. Landsc. 2(2) 104–114, https://doi.org/10.1080/24749508.2018.1452483.

    Article  Google Scholar 

  65. Ozturk D and Sesli F A 2015 Shoreline change analysis of the Kizilirmak Lagoon Series; Ocean Coast. Manag. 118(B) 290–308, https://doi.org/10.1016/j.ocecoaman.2015.03.009.

  66. Pethick J S 1993 Shoreline adjustments and coastal management: Physical and biological processes under accelerated sea level rise; Geogr. J. 159(2) 162–168, https://doi.org/10.2307/3451406.

    Article  Google Scholar 

  67. Rajawat A S, Chauhan H B, Ratheesh R, Rhode S, Bhanderi R J, Mahapatra M, Kumar M, Yadav R, Abraham S P, Singh S S and Keshri K N 2014 Assessment of coastal erosion along Indian coast on 1:25,000 scale using satellite data; Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-8 119–125, https://doi.org/10.5194/isprsarchives-XL-8-119-2014.

  68. Ramesh R, Purvaja R and Senthil V A 2011 National Assessment of Shoreline change: Odisha Coast NCSCM/MoEF Report 2011–01, 57p, http://www.ncscm.res.in/cms/more/pdf/ncscm-publications/orissa_final.pdf.

  69. Rani N S, Satyanarayana A N V and Bhaskaran P K 2015 Coastal vulnerability assessment studies over India: A review; Nat. Hazards 77(1) 405–428, https://doi.org/10.1007/s11069-015-1597-x.

    Article  Google Scholar 

  70. Rao V R, Murthy M R, Bhat M and Reddy N T 2009 Littoral sediment transport and shoreline changes along Ennore on the southeast coast of India: Field observations and numerical modelling; Geomorphology 112(1–2) 158–166, https://doi.org/10.1016/j.geomorph.2009.05.015.

    Article  Google Scholar 

  71. Rao V R, Kolli A, Raju K S and Kumaresan D 2019 Wave climate and nearshore sediment transport pattern along the SE coast of India; In: Proc. Fourth International Conference in Ocean Engineering (ICOE2018), Springer, Singapore, pp. 159–171.

  72. Romagnoli C, Mancini F and Brunelli R 2006 Historical shoreline changes at an active island volcano: Stromboli, Italy; J. Coast. Res. 224 739–749, https://doi.org/10.2112/05-0554.1.

    Article  Google Scholar 

  73. Romine B M, Fletcher C H, Frazer L N, Genz A S, Barbee M M and Lim S C 2009 Historical shoreline change, southeast Oahu, Hawaii: Applying polynomial models to calculate shoreline change rates; J. Coast. Res. 256 1236–1253, https://doi.org/10.2112/08-1070.1.

    Article  Google Scholar 

  74. Rooney J J B, Fletcher C H, Barbee M, Eversole D, Lim S C, Richmond B M and Gibbs A 2003 Dynamics of sandy shorelines in Maui, Hawaii: Consequences and causes; Coastal Sediments 2003 Proceedings (Clearwater Beach, Florida).

  75. Roy S, Mahapatra M and Chakraborty A 2018 Shoreline change detection along the coast of Odisha, India using digital shoreline analysis system; Spatial Information Research 26(5) 563–571, https://doi.org/10.1007/s41324-018-0199-6.

    Article  Google Scholar 

  76. SAC 2012 Coastal Zone of India; Space Applications Centre (ISRO), 601p, ISBN: 978-81-909978-9-8.

  77. Sanil Kumar V, Pathak K C, Pedenkar P, Raju N S N and Gowthaman R 2006 Coastal processes along Indian coastline; Curr. Sci. 91(4) 530–536, https://www.jstor.org/stable/24093957.

  78. Small C and Nicholls R J 2003 A global analysis of human settlement in coastal zones; J. Coast. Res. 19(3) 584–599, http://www.jstor.org/stable/4299200.

  79. Solomon S M 2005 Spatial and temporal variability of shoreline change in the Beaufort–Mackenzie region, northwest territories, Canada; Geo-Mar. Lett. 25 127–137, https://doi.org/10.1007/s00367-004-0194-x.

    Article  Google Scholar 

  80. Swain M 2018 Vulnerability due to coastal erosion and the associated socio-environmental responsibility; IJSAR 7(1) 17–26, http://journals.foundationspeak.com/index.php/ijsar/article/view/656.

  81. Swapna P, Ravichandran M, Nidheesh G, Jyoti J, Sandeep N, Deepa J S and Unnikrishnan A S 2020 Sea-Level Rise; In: Assessment of Climate Change over the Indian Region; Springer, Singapore, pp. 175–189.

    Chapter  Google Scholar 

  82. Thieler E R, Himmelstoss E A, Zichichi J L and Ergul A 2009 Digital shoreline analysis system (DSAS) version 4.0-An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2008–1278.

  83. Tonelli M, Fagherazzi S and Petti M 2010 Modeling wave impact on salt marsh boundaries; J. Geophys. Res. 115 C09028, https://doi.org/10.1029/2009JC006026.

    Article  Google Scholar 

  84. Trifonova E, Valchev N, Andreeva N, Eftimova P and Kotsev I 2011 Measurements and Analysis of Storm Induced Short-Term Morphological Changes in the Western Black Sea; In: Proceedings of the 11th International Coastal Symposium, Szczecin, Poland, J. Coast. Res. SI 64 149–154, ISSN 0749-0208.

  85. Vaidya A M, Kori S K and Kudale M D 2015 Shoreline response to coastal structures; Aquatic Procedia 4 333–340, https://doi.org/10.1016/j.aqpro.2015.02.045.

    Article  Google Scholar 

  86. Velsamy S, Balasubramaniyan G, Swaminathan B and Kesavan D 2020 Multi-decadal shoreline change analysis in coast of Thiruchendur Taluk, Thoothukudi district, Tamil Nadu, India, using remote sensing and DSAS techniques; Arab. J. Geosci. 13(17) 1–12, https://doi.org/10.1007/s12517-020-05800-1.

    Article  Google Scholar 

  87. Vinther N 2006 Updrift erosion of a barrier-spit terminus-Reasons and morphological consequences; J. Coast. Res. 222 361–370, https://doi.org/10.2112/04-0169.

    Article  Google Scholar 

  88. Zacharioudaki A and Reeve D E 2011 Shoreline evolution under climate change wave scenarios; Clim. Change 108 73–105, https://doi.org/10.1007/s10584-010-0011-7.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Gopalpur Port authorities and NCCR, MoES for their partial financial support and Berhampur University for their support and encouragement.

Author information

Affiliations

Authors

Contributions

Pratap K Mohanty, Prabin K Kar, Pravakar Mishra and Subhasis Pradhan: Conceived and designed the paper, writing and editing the manuscript. Prabin K Kar, Subhasis Pradhan, Balaji Behera and Sunil K Padhi: Field data collection and analysis, shoreline change and statistical analysis. Subhasis Pradhan, Prabin K Kar and Balaji Behera: Satellite data downloading, processing and analysis.

Corresponding author

Correspondence to Pratap K Mohanty.

Additional information

This article is part of the Topical Collection: Advances in Coastal Research.

Communicated by S R Marigoudar

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kar, P.K., Mohanty, P.K., Pradhan, S. et al. Shoreline change along Odisha coast using statistical and geo-spatial techniques. J Earth Syst Sci 130, 209 (2021). https://doi.org/10.1007/s12040-021-01703-1

Download citation

Keywords

  • Shoreline change
  • DSAS
  • Odisha coast
  • erosion
  • accretion