Skip to main content

Evolution of hematite and/or magnetite iron phases with thermal heating in ordinary chondrites: A generic characteristic

Abstract

We used 57Fe Mössbauer spectroscopic measurements on untreated and controlled thermally treated Ararki, Didwana, and Bhawad ordinary chondritic meteorites to understand the evolution of different iron phases with temperature. The samples were subjected to different heating temperatures and room temperature Mössbauer spectra were collected after cooling down these samples. The untreated meteorite samples showed the presence of olivine, pyroxene, troilite, and Fe–Ni alloy (kamacite/taenite) minerals. The decomposition of such iron based minerals started at or above 600°C towards hematite iron phase for all these meteorites. More interestingly, at about 1000°C or above, all initial mineral phases got converted into either hematite and/or magnetite. The present study provides a clue to understand the mechanism of conversion of minerals in ordinary chondrites.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Barcova K, Mashlan I R, Zboril R and Martinee I R 2003 Mössbauer study of transformation mechanism of Fe cations in olivine after thermal treatments in air; J. Radioanal. Nucl. Chem. 255 529–533.

    Article  Google Scholar 

  2. Bhandari N, Murty S V S, Shukla P N, Mahajan R R, Shukla A D, Lashkari G, Sisodia M S, Tripathi R P, Parthasarathy G, Verma H C and Frachi I A 2008 Ararki (L5) chondrite: The first meteorite find in Thar Desert of India; Meteor. Planet. Sci. 43 761–770.

    Article  Google Scholar 

  3. Bhatia B, Patel K R, Tripathi R P, Layek S and Verma H C 2015 Implication of Mössbauer spectra on the mixing model of eucrites and diogenites (resulting in howardites); Curr. Sci. 109 333–336.

    Google Scholar 

  4. Bland P A, Berry F J and Pillinger C T 2010 Rapid weathering in Holbrook: An iron-57 Mössbauer spectroscopy study; Meteor. Planet. Sci. 33 127–129.

    Article  Google Scholar 

  5. Bland P A, Berry F J, Jull A J T, Smith T B, Bevan A W R, Cadogan J M, Sexton A S, Franchi L A and Pillinger C T 2002 57Fe Mössbauer spectroscopy studies of meteorites: Implications for weathering rates, meteorite flux, and early solar system processes; Hyperfine Interact. 141 481–494.

    Article  Google Scholar 

  6. Cadogan J M, Rebbouh L, Mills J V J and Bland P A 2013 An 57Fe Mössbauer study of three Australian L5 ordinary-chondrite meteorites dating Kinclaven-001; Hyperfine Interact. 222 91–98.

    Article  Google Scholar 

  7. Galazka-Friedman J, Wozniak M, Duda P, Rzepecka P, Jakubowska M and Karwowski L 2017 Mössbauer spectroscopy – a useful method for classification of meteorites?; Hyperfine Interact. 238(67) 1–11.

    Google Scholar 

  8. Galazka-Friedman J, Szlachta K, Karwowski L and Woznaik M 2014 Mössbauer studies of Soltmany and Shisr 176 meteorites – comparison with other ordinary chondrites; Hyperfine Interact. 226 593–600.

    Article  Google Scholar 

  9. Guda L V, Kravtsova A N, Guda A A, Kubrin S P, Mazuritskiy M I and Soldatov A V 2019 Comprehensive Investigation of some ordinary chondrites based on X-ray methods and Mössbauer spectroscopy; J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11 3–13.

    Google Scholar 

  10. Kuzmann E, Nagy S and Vertes A 2003 Critical review of analystical applications of Mössbauer spectroscopy illustrated by mineralogical and geological examples; Pure Appl. Chem. 75 801–858.

    Article  Google Scholar 

  11. Maksimova A A, Oshtrakh M I, Petrova E V, Grokhovsky V I and Semionkin V A 2017 Comparison of iron-bearing minerals in ordinary chondrites from H, L and LL groups using Mössbauer spectroscopy with a high velocity resolution; Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 172 65–76.

    Article  Google Scholar 

  12. Maksimova A A, Oshtrakh M I, Klencsar Z, Petrova E V, Grokhovsky V I, Kuzmann E, Homonnay Z and Semionkin V A 2014 A comparative study of troilite in bulk ordinary chondrites Farmington L5, Tsarev L5 and Chelyabinsk LL5 using Mössbauer spectroscopy with a high velocity resolution; J. Mol. Struct. 1073 196–201.

    Article  Google Scholar 

  13. Paliwal B S, Tripathi R P, Verma H C and Sharma S K 2000 Classification of the Didwana-Rajod meteorite: A Mössbauer spectroscopic study; Meteor. Planet. Sci. 35 639–642.

    Article  Google Scholar 

  14. Paliwal S, Sisodia M S and Tripathi R P 2002 Bhawad L(LL) 6 chondrite: Petrography and Mössbauer study; Curr. Sci. 83 1071–1072.

    Google Scholar 

  15. Tominga T and Minai Y 1984 Application of Mossbauer spectroscopy to environmental and geochemical studies; Nucl. Sci. Appl. 1 749–791, Harwood Publishers, Gmbh (USA).

    Google Scholar 

  16. Tripathi R P, Chandra U, Chandra R and Lokanathan S 1978 A Mössbauer study of the effect of heating Biotite, Phlogopite and Vermiculite; J. Inorg. Nucl. Chem. (GB) 40 1293–1298.

    Article  Google Scholar 

  17. Tripathi R P, Sharma S K, Srivastava K L and Verma H C 2000 Mössbauer spectroscopic studies of the Piplia Kalan (Eucrite) and Lohawat (Howadite) meteorites; Meteor. Planet. Sci. 35 201–204.

    Article  Google Scholar 

  18. Tripathi R P, Dixit A and Bhandari N 2018 Characterization of Mukundpura carbonaceous chondrite; Curr. Sci. 114 214–217.

    Article  Google Scholar 

  19. Verma H C, Rawat A, Paliwal B S and Tripathi R P 2002 Mössbauer spectroscopic studies of an oxidized ordinary chondrite fallen at Itawa-Bhopji, India; Hyperfine Interact. 142 643–652.

    Article  Google Scholar 

  20. Verma H C, Kavi J and Tripathi R P 2003 Systematics of Mössbauer areas in ordinary chondrites and application to a newly fallen meteorite in Jodhpur, India; Meteor. Planet. Sci. 38 963–967.

    Article  Google Scholar 

  21. Verma H C and Tripathi R P 2004 Anomalous Mössbauer parameters in the second generation regolith Ghubara meteorite; Meteor. Planet. Sci. 39 1755–1759.

    Article  Google Scholar 

  22. Verma H C, Vijlani N, Tripathi A and Tripathi R P 2008 Mössbauer spectroscopic study of simulated weathering of Didwana ordinary chondrite; Hyperfine Interact. 186 141–145.

    Article  Google Scholar 

  23. von Meerwall E D 1975 A Fortran code for automatic spectrum analysis on medium-scale computers; Comput. Phys. Commun. 9 351–359.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Prof N N Bhandari for providing technical inputs and suggestions for the manuscript.

Author information

Affiliations

Authors

Contributions

AD: Data management and processing, writing and reviewing. BB: Data collection and processing. RPT: Data analysis, writing and reviewing.

Corresponding author

Correspondence to Ambesh Dixit.

Additional information

Communicated by N V Chalapathi Rao

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dixit, A., Bhatia, B. & Tripathi, R.P. Evolution of hematite and/or magnetite iron phases with thermal heating in ordinary chondrites: A generic characteristic. J Earth Syst Sci 130, 191 (2021). https://doi.org/10.1007/s12040-021-01699-8

Download citation

Keywords

  • Meteorites
  • ordinary chondrites
  • thermal treatment
  • Mössbauer spectroscopy