Skip to main content

Petrographic analysis of Krem (cave) Mawmluh stalagmite from Meghalaya, northeast India

Abstract

In the northeastern states of India, an in-cave expedition to Krem (cave) Mawmluh in Meghalaya has been carried out to document and study the stalagmite sample KM-24. The architectural structure is well preserved with alternating lamina/band of mixed calcite (C) and/or aragonite (A) possibly due to their polymorphic relationship as CaCO3 primarily precipitated as aragonite and later transformed into calcite due to neomorphism through time. Evidence in support of neomorphic processes have been deciphered through mineralogical fabrics (unstable polymorph to stable polymorph), intercrystalline voids in coalescence aragonite needle-like fabrics, sparite crystallite calcite in voids, fine micrite (M) within fabrics and growth breach (time gap). The variation in laminae thickness (BMLP) and major oxides (CaO and MgO wt.%) along the growth laminae may be associated with CaCO3 deposition, reflecting surface precipitation and disequilibrium conditions. Preserved biogenic remains (pink–red colour, filament or thread like-structures) within mineralogical fabrics, intercrystalline voids and outer laminae (A) may depict biogenic activity which might have facilitated precipitation of CaCO3.

Research highlights

  • Architectural structure of KM-24 consists of alternation lamina/band of mixed calcite /or aragonite possibly due to their polymorphic relationship as CaCO3.

  • Digenetic modification and neomorphism transformation are observed through primary features (mineralogical fabrics, intercrystalline voids, laminae thickness, etc.)

  • The BMLP and major oxides (CaO and MgO wt.%) along the growth laminae may be associated with CaCO3 deposition, reflecting surface precipitation and disequilibrium conditions.

  • Preserved biogenic remains associated with primary features may depict biogenic activity.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

References

  1. Alonso-Zarza A M, Martín-Pérez A, Martín-García R, Gil-Peña I, Meléndez A, Martínez-Flores E, Hellstrom J and Muñoz-Barco P 2011 Structural and host rock controls on the distribution, morphology and mineralogy of speleothems in the Castañar Cave (Spain); Geol. Mag. 148 211–255, https://dx.doi.org/10.1017/S0016756810000506.

    Article  Google Scholar 

  2. Atkinson T C, Lawson T J, Smart P L, Harmon R S and Hess J W 1986 New data on speleothem deposition and palaeoclimate in Britain over the last forty thousand years; J. Quat. Sci. 1 67–72.

    Article  Google Scholar 

  3. Baker A, Smith C L, Jex C, Fairchild I J, Genty D and Fuller L 2008 Annually laminated speleothems: A review; Int. J. Speleol. 37 193–206.

    Article  Google Scholar 

  4. Baskar S, Baskar R, Lee N and Theophilus P K 2009 Speleothem formations of Mawsmai caves and Krem Phyllut caves, Meghalaya, India: Some evidences for biogenic activities; Environ. Geol. 57 1169–1186.

    Article  Google Scholar 

  5. Baskar S, Baskar R, Tewari V C, Thorseth I H, Lise Ovrias, Lee N M and Rauth J 2011 Cave geomicrobiology in India: Status and prospects; In: Stromatolites: Interaction of microbes with sediments, Springer, Dordrecht, pp. 541–570, http://dx.doi.org/https://doi.org/10.1007/978-94-007-0397-1_24.

  6. Baskar S, Baskar R and Routh J 2014 Speleothems from Sahast Radhara caves in Siwalik Himalaya, India: Possible biogenic inputs; Geomicrobiol. J. 31 664–681.

    Article  Google Scholar 

  7. Bathurst R G 1972 Carbonate sediments and their diagenesis; Elsevier, Amsterdam, New York 12 239–240.

    Google Scholar 

  8. Berthaux J, Sondag F, Santos R, Soubie S F, Causse C, Plagnes V, Le Cornec F and Seidel A 2002 Paleoclimatic record of speleothems in a tropical region: Study of laminated sequences from a Holocene stalagmite; Quat. Int. 89 3–16.

    Article  Google Scholar 

  9. Borsato A, Frisia S, Jones B and Van der Borg K 2000 Calcite moonmilk: Crystal morphology and environment of formation in caves in the Italian Alps; J. Sedim. Res. 70 1179–1190.

    Article  Google Scholar 

  10. Breitenbach S F M, Adkins J F, Meyer H, Marwan N, Kumar K K and Haug G H 2010 Strong influence of water vapour source dynamics on stable isotopes in precipitation observed in southern Meghalaya, NE India; Earth Planet. Sci. Lett. 292 212–220.

    Article  Google Scholar 

  11. Brooks S and Brown M 2007 Caving in the abode of the clouds: Meghalaya, India; Speleol. Bull. Br. Cave 9 32–34.

    Google Scholar 

  12. Brown D A, Kamineni D C, Sawicki J A and Beveridge T J 1994 Minerals associated with biofilms occurring on exposed rock in a granitic underground research laboratory; Appl. Environ. Microbiol. 60 3182–3191.

    Article  Google Scholar 

  13. Canaveras J C, Cuezva S, Sanchez-Moral S, Lario J, Laiz L, Gonzalez J M and Saiz-Jimenez C 2006 On the origin of fiber calcite crystals in moonmilk deposits; Naturwissenschaften 93 27–32.

    Article  Google Scholar 

  14. Castanier S, Le M’etayer-Levrel G and Perthuisot J P 2000 Bacterial roles in the precipitation of carbonate minerals; In: Microbial sediments (eds) Riding R E and Awramik S M, Springer, Heidelberg, pp. 32–39, https://doi.org/10.1007/978-3-662-04036-2_5.

  15. Curry M D, Boston P J, Spilde M N, Baichtal J F and Campbell A R 2009 Cotton balls, a unique subaqueous moonmilk, and abundant subaerial moonmilk in Cataract Cave, Tongass National Forest, Alaska; Int. J. Speleol. 38 111–128.

    Article  Google Scholar 

  16. Denniston R F, Gonzalez L A, Asmerom Y, Sharma R H and Reagan M K 2000 Speleothem evidence for changes in Indian summer monsoon precipitation over the last 2300 years; Quat. Res. 53 196–202.

    Article  Google Scholar 

  17. Domínguez-Villar D, Krklec K, Pelicon P, Fairchild I J, Cheng H and Edwards L R 2017 Geochemistry of speleothems affected by aragonite to calcite recrystallization – potential inheritance from the precursor mineral; Geochim. Cosmochim. Acta 200 310–329.

    Article  Google Scholar 

  18. Dredge J, Fairchild I J, Harrison R M, Fernandez-Cortes A, Sanchez-Moral S, Jurado V, Gunn J, Smith A, Spotl C, Mattey D, Wynn P M and Grassineau N 2013 Cave aerosols: Distribution and contribution to speleothem geochemistry; Quat. Sci. Rev. 63 23–41.

    Article  Google Scholar 

  19. Duan W, Kotlia B S and Tan M 2013 Mineral composition and structure of the stalagmite laminae from Chulerasim cave, Indian Himalaya, and the significance for palaeoclimatic reconstruction; Quat. Int. 298 93–97, https://doi.org/10.1016%2Fj.quaint.2012.03.042.

  20. Duan W H, Cai B G, Tan M, Liu H and Zhang Y 2011 The growth mechanism of the aragonitic stalagmite laminae from Yunnan Xianren Cave, SW China revealed by cave monitoring; Boreas 41 113–123, https://doi.org/10.1111/j.1502-3885.2011.00226.x.

    Article  Google Scholar 

  21. Fairchild I J and Baker A 2012 Speleothem science: From process to past environments; John Wiley and Sons, https://doi.org/10.1002/9781444361094.

    Article  Google Scholar 

  22. Fairchild I J and Treble P C 2009 Trace elements in speleothems as recorders of environmental change; Quat. Sci. Rev. 28 449–468, https://doi.org/10.1016/j.quascirev.2008.11.007.

    Article  Google Scholar 

  23. Fairchild I J, Borsato A, Tooth A F, Frisia S, Hawkesworth C J, Huang Y, McDermott F and Spiro B 2000 Controls on trace element (Sr–Mg) compositions of carbonate cave waters: Implications for speleothem climatic records; Chem. Geol. 166 255–269.

    Article  Google Scholar 

  24. Frisia S 2015 Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies; Int. J. Speleol. 44 1–16, https://doi.org/10.5038/1827-806X.44.1.1.

    Article  Google Scholar 

  25. Frisia S and Borsato A 2010 Carbonates in continental settings. Facies, environments and processes; Dev. Sedimentol. 61 269–318.

    Google Scholar 

  26. Frisia S, Borsato A, Fairchild I J and McDermott F 2000 Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and Southwestern Ireland; J. Sedim. Res. 70 1183–1196.

    Article  Google Scholar 

  27. Frisia S, Borsato A, Fairchild I J, McDermott F and Selmo E M 2002 Aragonite–calcite relationships in speleothems (Grotte de Clamouse France): Environment, fabrics, and carbonate geochemistry; J. Sedim. Res. 72 687–699.

    Article  Google Scholar 

  28. Gebauer H D 2008 Resources on the speleology of Meghalaya state, India; Berliner Höhlenkundliche Berichte 33 152.

    Google Scholar 

  29. Genty D, Baker A and Vokal B 2001 Inter and intraannual growth rates of European stalagmites; Chem. Geol. 176 193–214.

    Article  Google Scholar 

  30. Ghosh S, Fallick A E, Paul D K and Potts P J 2005 Geochemistry and origin of Neoproterozoic Granitoids of Meghalaya, Northeast India: Implications for linkage with amalgamation of Gondwana Supercontinent; Gondwana Res. 8 421–432.

  31. González L A, Carpenter S J and Lohmann K C 1992 Inorganic calcite morphology: Roles of fluid chemistry and fluid flow; J. Sedim. Petrol. 62 382–399.

    Google Scholar 

  32. Hill C and Forti P 1997 Cave minerals of the world (2nd edn); National Speleological Society, pp. 59–61.

  33. Høeg O A 1946 Cyanophyceae and bacteria in calcareous sediments in the interior of limestone caves in Nord-Rana, Norway; Nytt Magazin for Naturvidenskapene 85 99–104.

    Google Scholar 

  34. Inagaki F, Hayashi S, Katsumi D, Motomura Y, Izawa E and Ogata S 1997 Microbial participation in the formation of siliceous deposits from geothermal water and analysis of the extremely thermophilic bacterial community; FEMS Microbiol. Ecol. 24 41–48, https://doi.org/10.1111/j.1574-6941.1997.tb00421.

    Article  Google Scholar 

  35. Jones B 2010 Microbes in caves: Agents of calcite corrosion and precipitation; In: Tufas and speleothems: Unravelling the microbial and physical controls; Geol. Soc. London 336 7–30.

  36. Kendall A C and Broughton P L 1978 Origin of fabric in speleothems of columnar calcite crystals; J. Sedim. Petrol. 48 519–538, https://doi.org/10.1306/212F74C3-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  37. Lachniet M S, Bernal J P, Asmerom Y and Polyak V 2012 Uranium loss and aragonite–calcite age discordance in a calcitized aragonite stalagmite; Quat. Geochronol. 14 26–37.

    Article  Google Scholar 

  38. Lechleitnera F A, Breitenbacha S F M, Cheng H, Plessen B, Rehfeld K, Goswami B, Marwang N, Eroglug D, Adkins J and Hauga G 2017 Climatic and in-cave influences on δ18O and δ13C in a stalagmite from northeastern India through the last deglaciation; Quat. Res. 88 458–471.

    Article  Google Scholar 

  39. Léveillé R J, Fyfe W S and Longstaffe F J 2000a An unusual occurrence of Ca–Mg–carbonate–silicate speleothems in basaltic caves, Kauai, Hawaii; J. Geol. 108 613–621.

    Article  Google Scholar 

  40. Léveillé R J, Fyfe W S and Longstaffe F J 2000b Geomicrobiology of carbonate–silicate microbialites from Hawaiian basaltic sea caves; Chem. Geol. 169 339–355.

    Article  Google Scholar 

  41. Li R and Jones B 2013 Temporal and spatial variations in the diagenetic fabrics and stable isotopes of pleistocene corals from the ironshore formation of Grand Cayman, British West Indies; Sedim. Geol. 286 58–72.

    Article  Google Scholar 

  42. Martinez-Pillado V, Aranburu A, Yusta I, Stoll H and Arsuaga J L 2010 Clima y ocupaciones en la Galeria de Estatuas (Atapuerca, Burgos) en los ultimos 14000 anos. Relatos una estalagmita; Munibe 61 89–102.

  43. Martín-García R, Alonso-Zarza A M and Martín-Pérez A 2009 Loss of primary texture and geochemical signatures in speleothems due to diagenesis: Evidences from Castañar Cave, Spain; Sedim. Geol. 221 141–149.

    Article  Google Scholar 

  44. Martín-García R, Alonso-Zarza A M, Frisia S, Rodríguez-Berriguete A, Drysdale R and Hellstrom J 2019 Effect of aragonite to calcite transformation on the geochemistry and dating accuracy of speleothems. An example from Castañar Cave, Spain; J. Sedim. Geol. 383 41–54.

    Article  Google Scholar 

  45. Martín-Pérez A, Martín-García R and Alonso-Zarza A M 2012 Diagenesis of a drapery speleothem from Castañar Cave: From dissolution to dolomitization; Int. J. Speleol. 41 251–266.

    Article  Google Scholar 

  46. Mudgil D, Baskar S, Baskar R, Paul D and Shouch Y S 2018 Biomineralization potential of Bacillus subtilis, Rummeliibacillus Stabekisii and Staphylococcus epidermidis strains in vitro isolated from speleothems, Khasi Hill Caves, Meghalaya, India; Geomicrobiology 35 1–20.

    Article  Google Scholar 

  47. McDermott F, Frisia S, Huang Y, Longinelli A, Spiro B, Heaton T H E, Hawkesworth C J, Borsato A, Keppens E, Fairchild I J, Van Der Borg K, Verheyden S and Selmo E 1999 Holocene climate variability in Europe: Evidence from d18O, textural and extension-rate variations in three speleothems; Quat. Sci. Rev. 18 1021–1038.

    Article  Google Scholar 

  48. Northup D E, Dahm C N, Melim L A, Spilde M N, Crossey L J, Lavoie K H, Mallory L M, Boston P J, Cunningham K I and Barns S M 2000 Evidence for geomicrobiological interactions in Guadalupe caves; J. Cave Karst Stud. 62 30–40.

    Google Scholar 

  49. Oldham T 1859 On geological structure of a part of the Khasi Hills, Bengal with observations on the meteorology and ethonology of that district; Geol. Surv. India Memoir 1 99–210.

    Google Scholar 

  50. Perrin C, Prestimonaco L, Servelle G, Tilhac R, Maury M and Cabrol P 2014 Aragonite–calcite speleothems: Identifying original and diagenetic features; J. Sedim. Res. 84 245–269.

    Article  Google Scholar 

  51. Railsback B L, Brook G A and Webster J W 1999 Petrology and paleoenvironmental significance of detrital sand and silt in a stalagmite from Drotsky’s cave, Botswana; Phys. Geogr. 20 331–347.

    Article  Google Scholar 

  52. Railsback L B, Brook G A, Chen J, Kalin R and Fleisher C J 1994 Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite; J. Sedim. Res. 64 147–155.

    Google Scholar 

  53. Sánchez V D C and González L A 2009 Calcite and aragonite precipitation under controlled instantaneous supersaturation: Elucidating the role of CaCO3 saturation state and Mg/Ca ratio on calcium carbonate polymorphism; J. Sedim. Res. 79 363–376.

    Article  Google Scholar 

  54. Sinclair D J, Banner J L and Taylor F W 2012 Magnesium and Strontium systematics in tropical speleothems from Western Pacific; Chem. Geol. 295 1–17.

    Article  Google Scholar 

  55. Susana G, Ferrari María C, Italiano Humberto J and Silva 2002 Effect of a cyanobacterial community on calcium carbonate precipitation in Puente del Inca (Mendoza, Argentina); Acta Bot. Croat. 61 1–9.

    Google Scholar 

  56. Tan M, Liu T S, Hou J Z, Qin X G, Zhang H C and Li T Y 2003 Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature; Geophys. Res. Lett. 30 191–194.

    Article  Google Scholar 

  57. Tremaine D M and Froelich P N 2013 Speleothem trace element signatures: A hydrologic geochemical study of modern cave dripwaters and farmed calcite; Geochim. Cosmochim. Acta 121 522–545.

    Article  Google Scholar 

  58. Wassenburg J A, Scholz D, Jochumb K P, Cheng H, Ostere J, Immenhauser A, Richter D K, Häger T, Jamieson R A, Baldini J U L, Hoffmann D and Breitenbach S F M 2016 Determination of aragonite trace element distribution coefficients from speleothem calcite–aragonite transitions; Geochim. Cosmochim. Acta 190 347–367.

    Article  Google Scholar 

  59. Weiner S and Dove P M 2003 An overview of biomineralization processes and the problem of the vital effect; Rev. Mineral. Geochem. 54 1–29.

    Article  Google Scholar 

  60. White W B 1988 Geomorphology and Hydrology of Karst Terrains; Oxford Univ. Press, New York 464, https://doi.org/10.1002/jqs.3390040211.

  61. Woo K S and Choi D W 2006 Calcitization of aragonite speleothems in limestone caves in Korea: Diagenetic process in a semiclosed system; Geol. Soc. Am. Spec. Paper 404 297–306, https://doi.org/10.1130/2006.2404(25).

    Article  Google Scholar 

  62. Zhang Y and Dawe R A 2000 Influence of Mg2+ on the kinetics of calcite precipitation and calcite crystal morphology; Chem. Geol. 163 129–138, https://doi.org/10.1016/S0009-2541(99)00097-2.

    Article  Google Scholar 

Download references

Acknowledgements

The research paper being the outcome of dissertation work, first author wishes to thank the Head, Department of Earth Science, Assam University, Silchar, India for extending all support during the dissertation work. Authors are grateful to Petrological Division, Geological Survey of India (GSI), Shillong, Meghalaya and the GSI-State Unit: Manipur–Nagaland, for the preparation of thin section and photomicrographs. Thanks to CSIR-NEIST (North East Institute of Science and Technology), Material Science and Technology Division, Jorhat, Assam for XRD facility. Thanks are also due to the DST-SERB National Facility, Department of Geology (Centre of Advanced Study in Geology), Institute of Science, Banaras Hindu University, Varanasi, for the permission to use SEM and EPMA facility.

Author information

Affiliations

Authors

Contributions

Dildi: Carried out the fieldwork and collected the sample, analysed the data and compiled the report. Nagendra Pandey: Designed and directed the study.

Corresponding author

Correspondence to Dildi.

Additional information

Communicated by Santanu Banerjee

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dildi, Pandey, N. Petrographic analysis of Krem (cave) Mawmluh stalagmite from Meghalaya, northeast India. J Earth Syst Sci 130, 207 (2021). https://doi.org/10.1007/s12040-021-01697-w

Download citation

Keywords

  • Krem Mawmluh
  • stalagmite
  • mineralogical fabrics
  • biogenic remains