Skip to main content
Log in

First record of cold-seep induced enhanced water column methane concentrations from the EEZ of India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

A scientific expedition was carried out onboard RV Sindhu Sadhana (12th to 23rd February, 2020) for gas hydrate/cold-seep exploration in Mannar basin, northern Indian Ocean. We observed for the first time gas flares in the water column images of the multi-beam echo-sounder off Mannar basin. Water sampling was carried out by using CTD through the gas flares to understand the nature and distribution of the gas in the water column. The CTD operation was monitored using a sub-bottom profiler (SBP) to keep track of CTD location vis-à-vis the gas flare. High dissolved methane concentrations up to 48.7 nmol/L were detected at the depth of 1075 mbsl, within the gas cloud observed in SBP data, whereas very low dissolved methane concentrations (~0.6 nmol/L) were observed beyond the gas cloud. Enhanced methane concentrations in the water column can be correlated with the presence of cold-seep ecosystem and shallow gas hydrate in the Mannar basin. The stability of the methane bubbles within the gas flares may be attributed to the formation of a thin hydrate layer at the gas–water interface of the gas bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alperin M, Blair N, Albert D, Hoehler T and Martens C 1992 Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment; Glob. Biogeochem. Cycles 6 271–291.

    Article  Google Scholar 

  • Astrom E K L, Carroll M L, Ambrose Jr W G, Sen A, Silyakova A and Carroll J 2018 Methane cold seeps as biological oases in the high-Arctic deep sea; Limnol. Oceanogr. 63 S209–S231.

    Article  Google Scholar 

  • Baillie P, Barber P M, Deighton I, Gilleran P A, Jinadasa W A and Shaw R D 2004 Petroleum systems of the deep water Mannar Basin, offshore Sri Lanka, paper presented at Proceedings, Deepwater and Frontier Exploration in Asia & Australasia Symposium.

  • Berndt C, Feseker T, Treude T, Krastel S, Liebetrau V, Niemann H, Bertics V J, Dumke I, Dunnbier K, Ferre B, Graves C, Gross F, Hissmann K, Hühnerbach V, Krause S, Lieser K, Schauer J and Steinle L 2014 Temporal constraints on hydrate-controlled methane seepage off Svalbard; Science 343 284–287.

    Article  Google Scholar 

  • Berner U, Poggenburg J, Faber E, Quadfasel D and Frische A 2003 Methane in ocean waters of the Bay of Bengal: Its sources and exchange with the atmosphere; Deep-Sea Res. Part II. Topical Stud. Oceanogr. 50 925–950.

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert C J, Rickert D, Widdel F, Giesecke A, Amann R, Jørgensen B B, Witte U and Pfannkuche O 2000 A marine microbial consortium apparently mediating anaerobic oxidation of methane; Nature 407 623–626.

    Article  Google Scholar 

  • Burton Z F M, Kroeger K F, Hosford Scheirer A, Seol Y, Burgreen-Chan B and Graham S A 2020 Tectonic uplift destabilizes subsea gas hydrate: A model example from Hikurangi Margin, New Zealand; Geophys. Res. Lett. 47 1–10.

    Article  Google Scholar 

  • Cartwright J 2007 The impact of 3D seismic data on the understanding of compaction, fluid flow and diagenesis in sedimentary basins; J. Geol. Soc., London 164 881–893.

    Article  Google Scholar 

  • Canfield D E, Kristensen E and Thamdrup B 2005 The Methane Cycle; Adv. Mar. Biol. 48 383–418.

    Article  Google Scholar 

  • Chand S, Knies J, Baranwal S, Jensen H and Klug M 2014 Structural and stratigraphic controls on subsurface fluid flow at the Veslemoy High, SW Barents Sea; Mar. Pet. Geol. 57 494–508.

    Article  Google Scholar 

  • Chronopoulou P-M, Shelley F, Pritchard W J, Maanoja S T and Trimmer M 2017 Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone; ISME J. 11(6) 1386–1399.

    Article  Google Scholar 

  • Claypool G E and Kvenvolden K A 1983 Methane and other hydrocarbon gases in marine sediment; Ann. Rev. Earth Planet. Sci. 11 299–327.

    Article  Google Scholar 

  • Corte D, Srivastava A, Koski M, Garcia J A L, Takaki Y, Yokokawa T, Nunoura T, Elisabeth N H, Sintes E and Herndl G J 2018 Metagenomic insights into zooplankton-associated bacterial communities; Environ. Microbiol. 20 492–505.

    Article  Google Scholar 

  • Conrad R 2005 Quantification of methanogenic pathways using stable carbon isotopic signatures: A review and a proposal; Org. Geochem. 36 739–752.

    Article  Google Scholar 

  • Curray J R 1984 Sri Lanka: Is it a mid-plate platelet?; J. Nat. Aq. Res. Agency 31 30–51.

    Google Scholar 

  • Damm E, Helmke E, Thoms S, Schauer U, Nöthig E, Bakker K and Kiene R P 2010 Methane production in aerobic oligotrophic surface water in the Central Arctic Ocean; Biogeoscience 7 1099–1108.

    Article  Google Scholar 

  • Deimling V J S, Rehder G, Greinert J, McGinnnis D F, Boetius A and Linke P 2011 Quantification of seep-related methane gas emissions at Tommeliten, North Sea; Cont. Shelf Res. 31 867–878.

    Article  Google Scholar 

  • Dewangan P, JayaPrakash C, Ramprasad T and Shipboard Participants onboard RV Ratnakar 2015 Gas Hydrate Deposits in the Cauvery-Mannar Offshore Basin, India; AGUFM 2015 OS23B-1997.

  • Ferre B, Mienert J and Feseker T 2012 Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales; J. Geophys. Res. Oceans 117 1–14.

    Article  Google Scholar 

  • Ferre B, Jansson P G, Moser M, Serov P, Portnov A, Graves C A, Panieri G, Grundger F, Berndt C and Lehmann M F 2020 Reduced methane seepage from Arctic sediments during cold bottom-water conditions; Nat. Geosci. 13 144–148.

    Article  Google Scholar 

  • Ferry J G 1992 Biochemistry of methanogenesis; Crit. Rev. Biochem. Mol. Biol. 27 473–503.

    Article  Google Scholar 

  • Florez-Leiva L, Damm E and Farias L 2013 Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem; Prog. Oceanogr. 112 38–48.

    Article  Google Scholar 

  • Gentz T, Damm E, von Deimling J S, Mau S, McGinnis D F and Schluter M 2014 A water column study of methane around gas flares located at the West Spitsbergen continental margin; Cont. Shelf Res. 72 107–118.

    Article  Google Scholar 

  • Greinert J, Artemov Y, Egorov V, De Batist M and McGinnis D 2006 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability; Earth Planet. Sci. Lett. 244 1–15.

    Article  Google Scholar 

  • Gullapalli S, Dewangan P, Kumar A, Dakara G and Mishra C K 2019 Seismic evidence of free gas migration through the gas hydrate stability zone (GHSZ) and active methane seep in Krishna-Godavari offshore basin; Mar. Pet. Geol. 110 695–705.

    Article  Google Scholar 

  • Holmes M E, Sansone F J, Rust T M and Popp B N 2000 Methane production, consumption, and air-sea exchange in the open ocean: An Evaluation based on carbon isotopic ratios; Glob. Biogeochem. Cycles 14 1–10.

    Article  Google Scholar 

  • Jahren A H, Conrad C P, Arens N C, Mora G and Lithgow-Bertelloni C 2005 A plate tectonic mechanism for methane hydrate release along subduction zones; Earth Planet. Sci. Lett. 236 691–704.

    Article  Google Scholar 

  • Karl D M, Beversdorf L, Bjöerkman K M, Church M J, Martinez A and Delong E F 2008 Aerobic production of methane in the sea; Nat. Geosci. 1 473–478.

    Article  Google Scholar 

  • Kessler J D, Reeburgh W S and Tyler S C 2006 Controls on methane concentration and stable isotope (δ2CH4 and δ13C-CH4) distributions in the water columns of the Black Sea and Cariaco Basin; Glob. Biogeochem. Cycles 20 1–13.

    Article  Google Scholar 

  • Kelley C 2003 Methane oxidation potential in the water column of two diverse coastal marine sites; Biogeochemistry 65 105–120.

    Article  Google Scholar 

  • Knittel K and Boetius A 2009 Anaerobic oxidation of methane: Progress with an unknown process; Ann. Rev. Microbiol. 63 311–334.

    Article  Google Scholar 

  • Leifer I, Jeuthe H, Gjosund S H and Johansen V 2009 Engineered and natural marine seep, bubble-driven buoyancy flows; J. Phys. Oceanogr. 39 3071–3090.

    Article  Google Scholar 

  • Levin L A, Baco A R, Bowden D A, Colaco A, Cordes E E, Cunha M R, Demopoulos A W J, Gobin J, Grupe B M and Le J 2016 Hydrothermal vents and methane seeps: Rethinking the sphere of influence; Front. Mar. Sci. 3 1–23.

    Article  Google Scholar 

  • Linke P, Sommer S, Rovelli L and McGinnis D F 2010 Physical limitations of dissolved methane fluxes: The role of bottom-boundary layer processes; Mar. Geol. 272 209–222.

    Article  Google Scholar 

  • Mahlstedt N 2020 Thermogenic formation of hydrocarbons in sedimentary basins; In: Hydrocarbons, oils and lipids: Diversity, origin, chemistry and fate, pp. 493–522.

  • Malinverno A, Cook A E, Daigle H and Oryan B 2018 Glacial cycles influence marine methane hydrate formation; Geophys. Res. Lett. 45 724–732.

    Article  Google Scholar 

  • Martens C S and Berner R A 1974 Methane production in the interstitial waters of sulfate-depleted marine sediments; Science 185 1167–1169.

    Article  Google Scholar 

  • Mau S, Heintz M B and Valentine D L 2012 Quantification of CH4 loss and transport in dissolved plumes of the Santa Barbara Channel California; Cont. Shelf Res. 32 110–120.

    Article  Google Scholar 

  • Mazumdar A, Dewangan P, Peketi A, Badesab F, Sadique M, Sivan K, Mathai J, Ghosh A, Zatale A, Pillutla S P K, Uma C, Mishra C K, Walsh Fernandes, Astha T and Paul T 2021 The first record of the genus Lamellibrachia (Siboglinidae) tube worm along with associated organisms in a chemosynthetic ecosystem from the Indian Ocean: A report from the Cauvery–Mannar Basin; J. Earth Syst. Sci., https://doi.org/10.1007/s12040-021-01653-8.

  • McAuliffe C 1971 Gas chromatographic determination of solutes by multiple phase equilibrium; Chem. Technol. 1 46–51.

    Google Scholar 

  • McGinnis D F, Greinert J, Artemov Y, Beaubien S E and Wuest A 2006 Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere?; J. Geophys. Res. Oceans 111 1–15.

    Article  Google Scholar 

  • Mishra C, Dewangan P, Mukhopadhyay R and Banerjee D 2019 Spatial distribution of gas hydrate deposits in Cauvery-Mannar offshore basin, paper presented at Osicon, IIT- Delhi.

  • Mishra C K, Dewangan P, Sriram G, Kumar A and Dakara G 2020 Spatial distribution of gas hydrate deposits in Krishna-Godavari offshore basin, Bay of Bengal; Mar. Pet. Geol. 112 104037.

    Article  Google Scholar 

  • Mishra C K, Dewangan P, Mukhopadhyay R and Banerjee D 2021 Velocity modeling and attribute analysis to understand the gas hydrates and free gas system in the Mannar Basin, India; J. Nat. Gas. Sci. Eng. (in press).

  • Myhre C L, Ferre B, Platt S M, Silyakova A, Hermansen O, Allen G, Pisso I, Schmidbauer N, Stohl A and Pitt J 2016 Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere; Geophys. Res. Lett. 43 4624–4631.

    Article  Google Scholar 

  • Moreno M H, Minshull T A, Westbrook G K, Sinha B and Sarkar S 2013 The response of methane hydrate beneath the seabed offshore Svalbard to ocean warming during the next three centuries; Geophys. Res. Lett. 40 5159–5163.

    Article  Google Scholar 

  • Owens N J P, Law C S, Mantoura R F C, Burkill P H and Llewellyn C A 1991 Methane flux to the atmosphere from the Arabian Sea; Nature 354 293–296.

    Article  Google Scholar 

  • Patra P K, Lal S, Venkataramani S, Gauns M and Sarma V 1998 Seasonal variability in distribution and fluxes of methane in the Arabian Sea; J. Geophys. Res. Oceans 103 1167–1176.

    Article  Google Scholar 

  • Rao M V, Chidambaram L, Bharktya D and Janardhanan M 2010 Integrated analysis of Late Albian to Middle Miocene sediments in Gulf of Mannar shallow waters of the Cauvery Basin, India: A sequence stratigraphic approach. In: Proceedings of 8th biennial international conference and exposition on petroleum geophysics, Hyderabad.

  • Rastogi A, Deka B, Bhattacharya G, Ramprasad T, Kamesh Raju K A, Srinivas K, Murthy G P S, Chaubey A K, Ramana M V, Subrahmanyam V, Sarma K V L N S, Desa M, Paropkari A L, Menezes A A A, Murthy V S N, Anthony M K, Subba Raju L V, Desa E and Veerayya M 1999 Gas hydrate stability zone thickness map of Indian offshore areas – A GIS-based approach; In: Proceedings of Third International Petroleum Conference & Exbn. Petrotech-99, pp. 489–494.

  • Ratnayake A S, Sampei Y and Kularathne C W 2017 Current status of hydrocarbon exploration in Sri Lanka; Int J. Oil Gas Coal Tech. 16 377–389.

    Article  Google Scholar 

  • Ratnayake A S, Kularathne C W and Sampei Y 2018 Assessment of hydrocarbon generation potential and thermal maturity of the offshore Mannar Basin, Sri Lanka; J. Pet. Explor. Prod. Technol. 8 641–654.

    Article  Google Scholar 

  • Reeburgh W S, Ward B B, Whalen S C, Sandbeck K A, Kilpatrickt K A and Kerkhof L J 1991 Black Sea methane geochemistry; Deep-Sea Res. Part I 38 S1189–S1210.

    Article  Google Scholar 

  • Riboulot V, Ker S, Sultan N, Thomas Y, Marsset B, Scalabrin C, Ruffine L, Boulart C and Ion G 2018 Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea; Nat. Commun. 9 1–8.

    Article  Google Scholar 

  • Romer M, Riedel M, Scherwath M, Heesemann M and Spence G D 2016 Tidally controlled gas bubble emissions: A comprehensive study using long-term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island; Geochem. Geophys. Geosyst. 17 3797–3814.

    Article  Google Scholar 

  • Romer M, Hsu C-W, Loher M, MacDonald I, dos Santos Ferreira C, Pape T, Mau S, Bohrmann G and Sahling H 2019 Amount and fate of gas and oil discharged at 3400 m water depth from a natural seep site in the Southern Gulf of Mexico; Front. Mar. Sci. 6 1–18.

    Article  Google Scholar 

  • Rehder G, Collier R W, Heeschen K, Kosro P M, Barth J and Suess E 2002 Enhanced marine CH4 emissions to the atmosphere off Oregon caused by coastal upwelling; Glob. Biogeochem. Cycles 16 1–22.

    Article  Google Scholar 

  • Rehder G, Leifer I, Brewer P G, Friederich G and Peltzer E T 2009 Controls on methane bubble dissolution inside and outside the hydrate stability field from open ocean field experiments and numerical modeling; Mar. Chem. 114 19–30.

    Article  Google Scholar 

  • Sauter E J, Muyakshin S I, Charlou J-L, Schluter M, Boetius A, Jerosch K, Damm E, Foucher J and Klages M 2006 Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles; Earth Planet. Sci. 243 354–365.

    Article  Google Scholar 

  • Scranton M I and Brewer P G 1978 Consumption of dissolved methane in the deep ocean; Limnol. Oceanogr. 23 1207–1213.

    Article  Google Scholar 

  • Schmale O, Greinert J and Rehder G 2005 Methane emission from high-intensity marine gas seeps in the Black Sea into the atmosphere; Geophys. Res. Lett. 32 1–4.

    Article  Google Scholar 

  • Shirodkar G, Wajih S, Naqvi A, Naik Hema, Pratihary Anil K, Kurian Siby and Shenoy D M 2018 Methane dynamics in the shelf waters of the West coast of India during seasonal anoxia; Mar. Chem. 203 55–63.

    Article  Google Scholar 

  • Silyakova A, Jansson P, Serov P, Ferre B, Pavlov A K, Hattermann T, Graves C A, Platt S M, Myhre C L and Grundger F 2020 Physical controls of dynamics of methane venting from a shallow seep area west of Svalbard; Cont. Shelf Res. 194 104030.

    Article  Google Scholar 

  • Sloan E and Koh C 2008 Clathrate hydrates of natural gases; CRC Press, 752p.

  • Sobek S, DelSontro T, Wongfun N and Wehrli B 2012 Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir; Geophys. Res. Lett. 39 1–4.

    Article  Google Scholar 

  • Sudheesh V, Gupta G V M and Naqvi S W A 2020 Massive methane loss during seasonal hypoxia/anoxia in the nearshore waters of southeastern Arabian Sea; Front. Mar. Sci. 7 1–14.

    Article  Google Scholar 

  • Suess E, Torres M E, Bohrmann G, Collier R W, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K and Winckler G 1999 Gas hydrate destabilization: Enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin; Earth Planet. Sci. Lett. 170 1–15.

    Article  Google Scholar 

  • Suess E 2010 Marine cold seeps; In: Handbook of hydrocarbon and lipid microbiology, Springer, pp.185–203.

  • Talukdar S S N 1982 Geology and hydrocarbon prospects of east coast basins of India and their relationship to evolution of the Bay of Bengal; Offshore South East Asia 82 conference.

  • Tsunogai U, Kosaka A, Nakayama N, Komatsu D D, Konno U, Kameyama S, Nakagawa F, Sumino H, Nagao K and Fujikura K 2010 Origin and fate of deep-sea seeping methane bubbles at Kuroshima Knoll, Ryukyu forearc region, Japan; Geochemical. J. 44 461–476.

    Article  Google Scholar 

  • Vadakkepuliyambatta S, Bunz S, Mienert J and Chand S 2013 Distribution of subsurface fluid-flow systems in the SW Barents Sea; Mar. Pet. Geol. 43 208–221.

    Article  Google Scholar 

  • Valentine D L, Blanton D C, Reeburgh W S and Kastner M 2001 Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin; Geochim. Cosmochim. Acta 65 2633–2640.

    Article  Google Scholar 

  • Waage M, Portnov A, Serov P, Bunz S, Waghorn K A, Vadakkepuliyambatta S, Mienert J and Andreassen K 2019 Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin; Geochem. Geophys. Geosys. 20 630–650.

    Article  Google Scholar 

  • Wallmann K, Riedel M, Hong W-L, Patton H, Hubbard A, Pape T, Hsu C W, Schmidt C, Johnson J E and Torres M E 2018 Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming; Nat. Commun. 9 1–9.

    Article  Google Scholar 

  • Wang B, Socolofsky S A, Breier J A and Seewald J S 2016 Observations of bubbles in natural seep flares at MC 118 and GC 600 using in-situ quantitative imaging; J. Geophys. Res. Oceans 121 2203–2230.

    Article  Google Scholar 

  • Ward B B 1992 The subsurface methane maximum in the Southern California Bight; Cont. Shelf Res. 12 735–752.

    Article  Google Scholar 

  • Ward B B, Kilpatrick K A, Novelli P C and Scranton M I 1987 Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters; Nature 327 226–229.

    Article  Google Scholar 

  • Waite W 2020 Methane Solubility (https://www.mathworks.com/matlabcentral/fileexchange/36963-methane-solubility), MATLAB Central File Exchange.

  • Warzinski R P, Lynn R, Haljasmaa I, Leifer I, Shaffer F, Anderson B J and Levine J S 2014 Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models; Geophys. Res. Lett. 41 6841–6847.

    Article  Google Scholar 

  • Westbrook G K, Thatcher K E, Rohling E J, Piotrowski A M, Palike H, Osborne A H, Nisbet E G, Minshull T A, Lanoisell M, James R H, Huhnerbach V, Green D, Fisher R E, Crocker A J, Chabert A, Bolton C, Agnieszka B M, Christian B and Aquilina A 2009 Escape of methane gas from the seabed along the West Spitsbergen continental margin; Geophys. Res. Lett. 36 1–5.

    Article  Google Scholar 

  • Whiticar M J 1999 Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane; Chem. Geol. 161 291–314.

    Article  Google Scholar 

  • Whiting G J and Chanton J P 1993 Primary production control of methane emission from wetlands; Nature 364 794–795.

    Article  Google Scholar 

  • Yvon-Durocher G, Allen A P, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N and Del Giorgio P A 2014 Methane fluxes show consistent temperature dependence across microbial to ecosystem scales; Nature 507 488–491.

    Article  Google Scholar 

  • Zeikus J G and Winfrey M R 1976 Temperature limitation of methanogenesis in aquatic sediments; Appl. Environ. Microbiol. 31 99–107.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Director, CSIR-NIO, and Secretary, MoES for supporting the gas hydrate program. The background information for the Cauvery–Mannar basin was generated through the CSIR-funded GEOSCAPE program. We thank CSIR-NIO’s research vessel management team for the contributions during the SSD-070 cruise. We thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Contributions

Aditya Peketi carried out result interpretation and manuscript preparation; Aninda Mazumdar contributed to manuscript preparation; Pawan Dewangan interpreted geophysical results and contributed to manuscript preparation; Gayatri Shirodkar, G Sriram, S P K Pillutla, and A Zatale contributed to sample collection, data generation and preparation of the map.

Corresponding author

Correspondence to A Peketi.

Additional information

Communicated by N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peketi, A., Mazumdar, A., Dewangan, P. et al. First record of cold-seep induced enhanced water column methane concentrations from the EEZ of India. J Earth Syst Sci 130, 179 (2021). https://doi.org/10.1007/s12040-021-01689-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01689-w

Keywords

Navigation