Skip to main content

Lithofacies analysis of volcanics and volcaniclastics of an ancient volcanic terrain with signatures of subaerial plinian volcanism: An example from Neoarchaean-Palaeoproterozoic Nandgaon Group, Bastar Craton, central India

Abstract

The N–S trending Neoarchaean to Palaeoproterozoic Dongargarh–Kotri belt in the Bastar Craton in central India exposes bimodal volcanics and volcaniclastics of the Nandgaon Group. In this contribution, lithofacies analysis of the Nandgaon Group has been attempted mainly based on distribution of rhyolites, basalts and pyroclastics in this ancient volcanic terrain, their field characteristics and petrography. The study area in the central part of the belt around Dongargaon–Gotatola area can be two distinct domains based on distribution and composition of volcanics and volcaniclastics. Domain-I comprises coherent and autoclastic rhyolite, and Domain-II with basic lava and pyroclastics. The rhyolites of Domain-I can be further divided into feldspar quartz phyric, quartz phyric, aphyric, and autoclastic rhyolites. Basic lava of Domain-II includes basalt and andesitic basalt. The associated volcaniclastics are mainly coarse lapilli tuff, fine lapilli tuff and ash beds. Field characteristics of coherent lavas and volcaniclastics attest to phreato-magmatically controlled plinian to sub-plinian style of eruptions. Effusive and explosive eruptive processes through multiple vents gave rise to the observed volcanic sequences. This study indicates that subaerial volcanism initially led to formation of felsic ignimbrites and ash deposits followed by effusive rhyolite lava flows. Subsequently, mafic volcanism occurred giving rise to pyroclastic flows and surges, followed by effusive mafic lava flows.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Acocella V 2014 Great challenges in volcanology: How does the volcano factory work?; Front. Earth Sci. 2 1–10, https://doi.org/10.3389/feart.2014.00004n.

    Article  Google Scholar 

  2. Asthana D, Dash M R, Pophare A N and Khare S K 1996 Interstratified low-Ti and high-Ti volcanics in arc-related Khairagarh Group of Central India; Curr. Sci. 71(4) 304–306.

  3. Branney M J, Kokelaar P and McConnell B J 1992 The Bad Step Tuff: A lava-like rheomorphic ignimbrite in a calc-alkaline piecemeal caldera, English Lake District; Bull. Volcanol. 54 187–199, https://doi.org/10.1007/BF00278388.

    Article  Google Scholar 

  4. Burgisser A and Bergantz G W 2002 Reconciling pyroclastic flow and surge: the multiphase physics of pyroclastic density currents; Earth Planet. Sci. Lett. 202(2) 405–418.

    Article  Google Scholar 

  5. Cas R A F and Wright J V 1987 Volcanic Successions: Modern and Ancient; 6th edn., Chapman and Hall.

    Book  Google Scholar 

  6. Cashman K V and Sparks R S J 2013 How volcanoes work: A 25-year perspective; Geol. Soc. Am. Bull. 125 664–690, https://doi.org/10.1130/B30720.1.

    Article  Google Scholar 

  7. Chandra S, Bhattacharjee D and Ventakeshwarlu T 1983 Stratigraphy and structure of Bailadila Nandgaon and Chhattisgarh Group of rocks in parts of Rajnandgaon, Durg and Bastar district, Madhya Pradesh; Unpubl. GSI report.

  8. Clarke A B, Voight B, Neri A and Macedonio G 2002 Transient dynamics of vulcanian explosions and column collapse; Nature 415(6874) 897–901.

    Article  Google Scholar 

  9. Cole J W 1979 Structure, petrology, and genesis of cenozoic volcanism, taupo volcanic zone, New Zealand – a review; New Zealand J. Geol. Geophys. 22(6) 631–657, https://doi.org/10.1080/00288306.1979.10424173.

    Article  Google Scholar 

  10. Condie K C 2003 Incompatible element ratios in oceanic basalts and komatiites: Tracking deep mantle sources and continental growth rates with time; Geochem. Geophys. Geosyst. 4(1) 1–28, https://doi.org/10.1029/2002GC000333.

    Article  Google Scholar 

  11. Divakar Rao V, Narayana V L, Rama Rao P, Murthy N N, Subba Rao M V, Mallikharjuna Rao J and Reddy G L N 2000 Geochemical studies in central Indian craton; In: Tectonomagmatism, Geochemistry and Metamorphism of Precambrian Terrains (ed.) Gyani K C and Kataria P, Proceedings at National Seminar, Udaipur University, pp. 109–125.

  12. Druitt T H and Sparks R S J 1982 A proximal ignimbrite breccia facies on Santorini volcano, Greece; J. Volcanol. Geotherm. Res. 3 147–171.

    Article  Google Scholar 

  13. D’Elia L, Muravchik M, Franzese J and López L 2012 Tectonostratigraphic analysis of the Late Triassic-Early Jurassic syn-rift sequence of the Neuquén Basin in the Sañicó depocentre; Neuquén Province, Argentina; Andean Geol. 39(1) 133–157.

    Google Scholar 

  14. Fisher R V 1966 Rocks composed of volcanic fragments; Earth Sci. Rev. 1 287–298.

    Article  Google Scholar 

  15. Fisher R V 1961 Proposed classification of volcaniclastic sediments and rocks; Geol. Soc. Am. Bull. 72 1395–1408.

    Article  Google Scholar 

  16. Fisher R V and Schmincke H U 1984 Pyroclastic Rocks; Springer, Berlin, https://doi.org/10.1007/978-3-642-74864-6.

  17. Formenti Y, Druitt T H and Kelfoun K 2003 Characterisation of the 1997 Vulcanian explosions of Soufriere Hills Volcano, Montserrat, by video analysis; Bull. Volcanol. 65(8) 587–605.

    Article  Google Scholar 

  18. Ghosh J and Pillay K R 1992 Tectono-magmatic evolution of the Kotri Lineament Zone – a study from Kondruz–Mendra area, Bastar distric, MP; Rec. Geol. Surv. India 125(6) 17–19.

    Google Scholar 

  19. Ghosh J G 2004 356 Ga tonalite in the central part of the Bastar Craton, India: Oldest Indian date; J. Asian Earth Sci. 23(3) 359–364, https://doi.org/10.1016/S1367-9120(03)00136-6.

    Article  Google Scholar 

  20. Ghosh J G and Pillay K R 2012 Evolution of the Kotri linear belt: A late Archaean continental rift in the Bastar Craton, Central India; In: National workshop on recent advances in geology of Dongarh–kotri belt, central India and its mineral potential, Abstracts, AMD and Gondwana Geol. Soc. Nagpur, pp. 16–17.

  21. Ghosh J G, Pillay K R and Dutta N K 2002 Tectonostratigraphy of the Kotri Linear belt, Central India (in prep.).

  22. Goswami S, Upadhyay P K, Bhagat S, Zakaulla S, Bhatt A K, Natarajan V and Dey S 2018 An approach of understanding acid volcanics and tuffaceous volcaniclastics from field studies: A case from Tadpatri Formation, Proterozoic Cuddapah basin, Andhra Pradesh; J. Earth Syst. Sci. 127(2) 1–21, https://doi.org/10.1007/s12040-018-0929-0.

    Article  Google Scholar 

  23. Houghton B F, Wilson C J N, Rosenberg M D, Smith I E M and Parker R J 1996 Mixed deposits of complex magmatic and phreatomagmatic volcanism: An example from Crater Hill, Auckland, New Zealand; Bul. Volcanol. 58(1) 59–66.

    Article  Google Scholar 

  24. Jain S C, Yedekar D B and Nair K K K 1991 Central Indian shear zone: A major Precambrian crustal boundary; J. Geol. Soc. India 37 521–532.

    Google Scholar 

  25. Khanna T C, Bizimis M, Barbeau D L Jr, Krishna A K and Sesha Sai V V 2019 Evolution of ca. 2.5 Ga Dongargarh volcano-sedimentary Supergroup, Bastar craton, Central India: Constraints from zircon U–Pb geochronology, bulk-rock geochemistry and Hf–Nd isotope systematics; Earth Sci Rev. 190 273–309, https://doi.org/10.1016/j.earscirev.2018.11.014.

    Article  Google Scholar 

  26. Krishnamurthy P, Sinha D K, Rai A K, Seth D K and Singh S N 1990 Magmatic rocks of the Dongargarh Supergroup, Central India – their petrological evolution and implications on metallogeny; Geol Surv. India Spec. Publ. 28 303–319.

    Google Scholar 

  27. Lipman P W 1984 The roots of ash flow calderas in Western North America: Windows into the tops of granitic batholiths; J. Geophys. Res. 89 8801–8841.

    Article  Google Scholar 

  28. Lorenz V 1974 Vesiculated tuffs and associated features; Sedimentology 21 273–291.

    Article  Google Scholar 

  29. Manikyamba C, Santosh M, Chandan Kumar B, Rambabu S, Li T, Saha A, Khelen A C, Ganguly S, Th Singh D and Rao D V S 2016 Zircon U–Pb geochronology, Lu–Hf isotope systematics, and geochemistry of bimodal volcanic rocks and associated granitoids from Kotri Belt, Central India: Implications for Neoarchean-Paleoproterozoic crustal growth; Gondwana Res. 38 313–333.

    Article  Google Scholar 

  30. Mcphie J, Doyle M and Allen R 1993 Volcanic Textures; Centre for Ore Deposit and Exploration Studies, University of Tasmania, 1st edn.

  31. Mishra V P, Singh P and Dutta N K 1988 Stratigraphy, structure and metamorphic history of Bastar district, MP; Rec. Geol. Surv. Ind. 117(3–9) 1–26.

  32. Mohanty S P 2015 Chapter 11: Palaeoproterozoic supracrustals of the Bastar Craton: Dongargarh Supergroup and Sausar Group; Geol. Soc. London Memoirs 43 151–164, https://doi.org/10.1144/M43.11.

  33. Morgan L A and Schulz K J 2012 Physical volcanology of volcanic massive sulphide deposits in volcanogenic massive sulphide occurrence model: US Geological Survey Scientific Investigation report 2010-5070-C, Chap. 5, 36p.

  34. Mueller W U, Stix J, Corcoran P L and Daigneault R 2009 Subaqueous calderas in the Archean Abitibi greenstone belt – An overview and new ideas; Ore Geo. Rev. 35 4–46.

    Article  Google Scholar 

  35. Mueller W U and Thurston P C 2004 Precambrian volcanism: An independent variable through time; In: The Precambrian Earth: Tempos and Events Developments in Precambrian Geology (eds) Eriksson P G et al. 12 271–358.

  36. Mukhopadhyay J, Ray A, Gosh G, Medda R A, Bandyopadhyay P P and Mukhopadhyay J 2001 Recognition, characterization and implications of high-grade silicic ignimbrite facies from the paleoproterozoic bijli rhyolites, Dongargarh Supergroup, central India; Gond. Res. 4(3) 519–527.

    Article  Google Scholar 

  37. Nemeth K and Martin U 2007 Practical volcanology: Lecture notes for understanding volcanic rocks from field based studies; Geological Institute of Hungary, Budapest, ISBN 978-963-671-259-4.

  38. Neogi S and Miura H 1996 Geochemistry of the Dongargarh volcanic rocks, central India: Implications for the Precambrian mantle; Precamb. Res. 76 77–91.

    Article  Google Scholar 

  39. Orth K, Cas R A F and Wrightt J V 2014 Facies analysis and facies associations in the recognition of volcanic centres in silicic terranes: An example from the Early Devonian of Australia; Austr. J. Earth Sci. 37–41, https://doi.org/10.1080/08120098908729480.

  40. Pilote C, Corcoran P L and Mueller W U 2012 A Neoproterozoic continental rift succession: The volcano-sedimentary Koivib Mountains deposits of Namibia; Precamb. Res. 214–215 172–184, https://doi.org/10.1016/j.precamres.2011.10.014.

    Article  Google Scholar 

  41. Rai A K, Sinha, D K and Parihar P S 2012 A geochemical approach towards the tectonic environment of basic meta-volcanics (Pitepani Volcanics) of Bodal Bhandaritola area Rajnandgaon District, Chhattisgarh; In: The National workshop on Recent advances in Geology of Dongargarh–Kotri belt, Central India and its Mineral potential, Gondwana Geological Society, Nagpur.

  42. Rajesh H M, Mukhopadhyay J, Beukes N J, Gutzmer J, Belyanin G A and Armstrong R A 2009 Evidence for early Archaean granite from Bastar craton, India; J. Geol. Soc. London 166 193–196.

    Article  Google Scholar 

  43. Ramachandra H M, Roy A, Mishra V P and Dutta N K 2001 A critical review of the tectonothermal evolution of the Bastar Craton; Geol Surv. India Spec. Publ. 55 161–180.

    Google Scholar 

  44. Ramakrishnan M 1990 Crustal development in southern Bastar, Central Indian Craton; Geol. Surv. India Spec. Publ. 28 44–66.

    Google Scholar 

  45. Ramakrishnan M and Vaidyanadhan R 2010 Geology of India; Geol. Soc. India Publ. V1 edn.

  46. Ross P S, Delpit S, Haller M J, Nemeth K and Corbella H 2011 Influence of the substrate on maar-diatreme volcanoes: An example of a mixed setting from the Pali Aike volcanic field, Argentina; J. Volcanol. Geotherm. Res. 201(1–4) 253–271, https://doi.org/10.1016/j.jvolgeores.2010.07.018.

    Article  Google Scholar 

  47. Rao D V, Narayana B L, Rama Rao P, Subba Rao M V, Rao J M, Murthy N N and Reddy G L N 2000 Geochemical studies in central Indian craton; In: Tectonomagmatism, geochemistry and metamorphism of Precambrian terrains (eds) Gyani K C and Kataria P, Proceedings at National Seminar, Udaipur University, pp. 109–125.

  48. Santosh M, Tsunogae T, Yang C X, Han Y S, Hari K R, Manu Prasanth M P and Uthup S 2020 The Bastar craton, central India: A window to Archean-Paleoproterozoic crustal evolution; Gondwana Res. 79 157–184.

    Article  Google Scholar 

  49. Sarkar S N 1957 Stratigraphy and tectonics of Dongargarh system: A new system in the Precambrian of Bhandara–Durg–Balaghat area, Bombay and Madhya Pradesh; J. Sci. Engg. Res. 1(2) 237–268.

  50. Sarkar S N 1958 Stratigraphy and tectonics of Dongargarh system: A new system in the Precambrian of Bhandara–Durg–Balaghat area, Bombay and Madhya Pradesh; J. Sci. Eng. Res. 2(2) 145–160.

  51. Sarkar S N, Sarkar S S and Ray S L 1994 Geochemistry and genesis of the Dongargarh Supergroup Precambrian rocks in Bhandara–Durg Region, central India; Indian J. Earth Sci. 21 117–126.

  52. Sarkar S N, Gopalan K and Trivedi J R 1981 New data on the geochronology of the Precambrians of Bhandara–Durg, Central India; Ind. J. Earth Sci. 8 131–151.

    Google Scholar 

  53. Sarkar G, Corfu F, Paul D K, McNaughton N J, Gupta S N and Bishul P K 1993 Early Archaean crust in Bastar craton, Central India: A geochemical and isotopic study; Precamb. Res. 62 127–137.

    Article  Google Scholar 

  54. Schmid R 1981 Descriptie nomenclature and classification of pyroclastic deposits and fragments: Recommendations of the IUGS Subcommision on the systematics of Igneous Rocks; Geology 9 41–43.

  55. Self S 1983 Large-scale phreatomagmatic silicic volcanism: A case study from New Zealand; J. Volcanol. Geotherm. Res. 17(1–4) 433–469, https://doi.org/10.1016/0377-0273(83)90079-3.

    Article  Google Scholar 

  56. Sensarma S, Hoernes S and Mukhopadhyay D 2004 Relative contributions of crust and mantle to the origin of the Bijli Rhyolite in a palaeoproterozoic bimodal volcanic sequence (Dongargarh Group), central India; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113(4) 619–648.

  57. Sensarma S and Mukhopadhyay D 2003 New Insight on the stratigraphy and volcanic history of the Dongargarh Belt, central India; Gond. Geol. Mag. Spec. 7 129–136.

    Google Scholar 

  58. Sigurdsson H 2000 Volcanic episodes and rates of volcanism; In: Encyclopedia of Volcanoes; San Diego: Academic, pp. 271–282.

  59. Soriano C and Marti J 1999 Facies analysis of volcano-sedimentary successions hosting massive sulfide deposits in the Iberian pyrite belt, Spain; Eco. Geol. Geoscience World 94(6) 867–882, https://doi.org/10.2113/gsecongeo.94.6.867.

    Article  Google Scholar 

  60. Sparks R S J 1976 Grainsize variations in ignimbrites and implications for the transport of pyroclastic flows; Sedimentology 23 147–188.

    Article  Google Scholar 

  61. Stewart A L and McPhie J 2003 Internal structure and emplacement of an Upper Pliocene dacite cryptodome, Milos Island, Greece; J. Volcanol. Geotherm. Res. 124(1–2) 129–148, https://doi.org/10.1016/S0377-0273(03)00074-X.

    Article  Google Scholar 

  62. Stewart A L and McPhie J 2006 Facies architecture and Late Pliocene-Pleistocene evolution of a felsic volcanic island, Milos, Greece; Bull. Volcanol. 68(7–8) 703–726, https://doi.org/10.1007/s00445-005-0045-2.

    Article  Google Scholar 

  63. Walker G P L 1985 Origin of coarse lithic breccias near ignimbrite source vents; J. Volcanol. Geotherm. Res. 25 157–171.

    Article  Google Scholar 

  64. White J D L and Houghton B F 2006 Primary volcaniclastic rocks; Geology 34(8) 677–680.

    Article  Google Scholar 

  65. White J and Valentine G 2016 Magmatic versus phreatomagmatic fragmentation: Absence of evidence is not evidence of absence; Geosphere 12 1478–1488, https://doi.org/10.1130/GES01337.1.

    Article  Google Scholar 

  66. Wilson C J N, Rogan A M, Smith I E M, Northey D J, Nairn I A and Houghton B F 1984 Caldera Volcanoes of the Taupo Volcanic Zone, New Zealand; J. Geophys. Res. 89 8463–8484.

    Article  Google Scholar 

  67. Wolff J A and Sumner J M 2000 Lava fountains and their products; In: Encyclopedia of Volcanoes (eds) Sigurdsson H et al., Academic Press, San Diego, pp. 321–329.

    Google Scholar 

  68. Woods A W 1995 A model of Vulcanian explosions; Nuclear Engg. Desgn. 155(1–2) 345–357.

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere thanks to the Additional Director General and HoD, Geological Survey of India, Central Region for giving opportunity to work in the area and for the necessary permission to publish the work. Authors are thankful to the Deputy Director General, GSI, SU: Chhattisgarh, Raipur for their administrative, financial and technical help during the execution of the fieldwork and laboratory studies. The authors also extend their gratitude to the anonymous reviewers for their critical review and suggestions to improve the manuscript.

Author information

Affiliations

Authors

Contributions

Maitrayee Chakraborty: Field data collection, data curation, project execution and writing original draft. Samir Debnath: Field data collection, data curation, project execution and writing original draft, analysis and software. Satya Narayana Mahapatro: Conceptualisation, supervision, methodology, investigation, writing original draft, review and editing.

Corresponding author

Correspondence to Samir Debnath.

Additional information

Communicated by N V Chalapathi Rao

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, M., Debnath, S. & Mahapatro, S.N. Lithofacies analysis of volcanics and volcaniclastics of an ancient volcanic terrain with signatures of subaerial plinian volcanism: An example from Neoarchaean-Palaeoproterozoic Nandgaon Group, Bastar Craton, central India. J Earth Syst Sci 130, 145 (2021). https://doi.org/10.1007/s12040-021-01656-5

Download citation

Keywords

  • Nandgaon
  • lithofacies
  • volcanics
  • rhyolite
  • basalt
  • volcaniclastics
  • pyroclastics