Skip to main content

Relations between marine biogeochemical indices and cloud properties over the Arabian Sea

Abstract

Knowledge of relations among ocean biogeochemical and cloud properties will help to plan experiments necessary to understand the mechanisms and processes underlying the links between ocean and atmosphere interactions. Here, we explored the associations between ocean biogeochemical and cloud properties in a region that seasonally experiences polluted and pristine atmospheric conditions in winter and summer, respectively. The implications of ocean surface chlorophyll-a and biogeochemical fluxes (sea salt, dimethyl sulphide and organic fraction in sea spray) to cloud properties (cloud effective radii (Re), cloud optical thickness, and cloud droplet number concentration (CDNC)) were studied using MODIS (Terra, Collection 6, L3) monthly data from 2001 to 2015 along with reanalysis information. We have adopted a climatological averaging approach in time (monthly, seasonal and annual) and space (coastal, open and total (basin) Arabian Sea). This approach was used to minimize incompatibility, if any, between ocean and cloud properties arising from spatio-temporal lags due to different dynamics in the respective boundary layers. The trends in monthly means suggest decreases in chlorophyll-a and CDNC, while Re increased over the Arabian Sea basin during 2001–2015. Variability at the basin scale (expressed as standard deviation in each month, SD) exceeded mean values of respective months for chlorophyll-a, whereas it was nearly half of the mean values for CDNC. An increase in Re seems facilitated more during warmer 2011–2015 than in the 2001–2010 period, which coincided with the decrease in CDNC. Fifteen-year monthly mean climatologies suggest considerable associations among ocean biogeochemical indices and cloud properties, which is more conspicuous during summer monsoon. Increase in sea salt flux appears to account for the higher values of Re in June–July over the basin due to strong monsoon wind. Inverse relations between chlorophyll-a and Re are indicative of smaller droplets that resulted from new particles formed from and/or facilitated by marine biogeochemical emissions. Decline in new particle production due to decrease in surface chlorophyll-a and the growth of particles facilitated by increase in warming, seem responsible for increase in Re and decrease in CDNC from 2001 to 2015. Using chlorophyll-a as the main proxy for ocean biogeochemical indices, we demonstrated that connections between ocean biogeochemistry and clouds are sustained in both small and large scales in space and time over the Arabian Sea.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

References

  1. Anderson T R, Spall S A, Yool A, Cipollini P, Chellenor G and Fasham M J R 2001 Global fields of sea surface dimethylsulphide predicted from chlorophyll, nutrients and light; J. Mar. Syst. 30 1–20.

    Article  Google Scholar 

  2. Andreas E L 2002 A review of the sea spray generation function for the open ocean; In: Atmosphere–Ocean interactions, vol. 1 (ed.) Perrie W, WIT, Southampton, UK, pp. 1–46.

  3. Arnold S R, Spracklen D V, Gebhardt S, Custer T, Williams J, Peeken I and Alvain S 2010 Relationships between atmospheric organic compounds and air–mass exposure to marine biology; Environ. Chem. 7 232–241.

    Article  Google Scholar 

  4. Arun Kumar S V V, Babu K N and Shukla A K 2015 Comparative analysis of chlorophyll-a distribution from SeaWiFS, MODIS-Aqua, MODIS-Terra and MERIS in the Arabian Sea; Mar. Geodesy 38 40–57.

    Article  Google Scholar 

  5. Banse K 1994 On the coupling of hydrography, phytoplankton, zooplankton, and settling organic particles offshore in the Arabian Sea; In: Biogeochemistry of the Arabian Sea (ed.) Lal D, Indian Academy of Sciences, Bangalore, pp. 27–63.

  6. Cantrell W, Shaw G, Cass G R, Chowdhury Z, Huges L S, Prather K A, Guazzotti S A and Coffee K R 2001 Closure between aerosol particles and cloud condensation nuclei at Kaashidhoo Climate Observatory; J. Geophys. Res. 106 28,711–28,718.

    Article  Google Scholar 

  7. Chakraborty S and Maitra A 2013 Interrelation between microphysical and optical properties of cloud and rainfall in the Indian region; Ind. J. Radio Space Phys. 42 105–112.

    Google Scholar 

  8. Das S, Dey S and Dash S K 2014 Inter-annual variations in natural and anthropogenic aerosol loadings over the seas adjoining India using a hybrid approach; Atmos. Sci. Lett. 15 58–64.

    Article  Google Scholar 

  9. Eytan E, Koren I and Altaratz O et al. 2020 Longwave radiative effect of the cloud twilight zone; Nature Geosci. 13 669–673, https://doi.org/10.1038/s41561-020-0636-8.

    Article  Google Scholar 

  10. Fiehn A, Quack B, Stemmler I, Ziska F and Krüger K 2018 Importance of seasonally resolved oceanic emissions for bromoform delivery from the tropical Indian Ocean and west Pacific to the stratosphere; Atmos. Chem. Phys. 18 11973–11990, https://doi.org/10.5194/acp-18-11973-2018.

    Article  Google Scholar 

  11. Finkelstein Y and Tamir A 1976 Interfacial heat transfer coefficients of various vapors in direct contact condensation; Chem. Eng. J. 12 199–209.

    Article  Google Scholar 

  12. Fossum K N, Ovadnevaite J, Ceburnis D, Preißler J, Snider J R, Huang R-J, Zuend A and O’Dowd C 2020 Sea-spray regulates sulfate cloud droplet activation over Oceans; Climate Atmos. Sci. 3 14, https://doi.org/10.1038/s41612-020-0116-2.

    Article  Google Scholar 

  13. Gantt B, Meskhidze N, Facchini M C, Rinaldi M, Ceburnis D and O’Dowd C D 2011 Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol; Atmos. Chem. Phys. 11 8777–8790.

    Article  Google Scholar 

  14. Han Q, Rossow W and Lacis A 1994 Near-global survey of effective droplet radii in liquid water clouds using ISCCP data; J. Clim. 7 465–497.

    Article  Google Scholar 

  15. Han Q, Rossow W, Chou J and Welch R M 1998 Global survey of the relationships of cloud albedo and liquid water path with droplet size using ISCCP; J. Clim. 11 1516–1528.

    Article  Google Scholar 

  16. Hutchison K D 2002 The retrieval of cloud base heights from MODIS and 3-dimensional cloud fields from NASA’s EOS Aqua mission; Int. J. Remote Sens. 23 5247–5263.

    Article  Google Scholar 

  17. Jia H, Ma X, Quaas J, Yin Y and Qiu T 2019 Is positive correlation between cloud droplet effective radius and aerosol optical depth over land due to retrieval artifacts or real physical processes?; Atmos. Chem. Phys. 19 8879–8896.

    Article  Google Scholar 

  18. Jose S, Nair V S and Babu S S 2020 Anthropogenic emissions from South Asia reverses the aerosol indirect effect over the northern Indian Ocean; Nat. Sci. Rep. 10 18360, https://doi.org/10.1038/s41598-020-74897-x.

    Article  Google Scholar 

  19. Kedia S and Ramachandran S 2009 Variability in aerosol optical and physical characteristics over the Bay of Bengal and the Arabian Sea deduced from Angstrom exponents; J. Geophys. Res. 114 D14207, https://doi.org/10.1029/2009JD011950.

    Article  Google Scholar 

  20. Kulkarni J R, Maheskumar R S, Morwal S B, Padma Kumari B, Konwar M, Deshpande C G, Joshi R R, Bhalwankar R V, Pandithurai G, Safai P D, Narkhedkar S G, Dani K K, Nath A, Nair Sathy, Sapre V V, Puranik P V, Kandalgaonkar S S, Mujumdar V R, Khaladkar R M, Vijayakumar R, Prabha T V and Goswami B N 2012 The Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX): Overview and preliminary results; Curr. Sci. 102 413–425.

    Google Scholar 

  21. Kumar M D 2006 Biogeochemistry of the North Indian Ocean; IGBO-WCRP-SCOPE Report Series: 1, Indian National Science Academy, New Delhi, 25p.

  22. Kumar M D, Shenoy D M, Sarma V V S S, George M D and Dandekar M 2002 Export fluxes of dimethylsulfoniopropionate and its break down gases at the air–sea interface; Geophys. Res. Lett. 29 8-1–8-3, doi: https://doi.org/10.1029/2001GL013967.

  23. Lana A, Simo R, Vallina S M and Dachs J 2012 Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data; Atmos. Chem. Phys. 12 7977–7993.

    Article  Google Scholar 

  24. Lelieveld J, Bourtsoukidis E, Brühl C, Fischer H, Fuchs H, Harder H, Hofzumahaus A, Holland F, Marno D, Neumaier M, Pozzer A, Schlager H, Williams J, Zahn A and Ziereis H 2018 The South Asian monsoon – pollution pump and purifier; Science 361 270–273, https://doi.org/10.1126/science.aar2501.

    Article  Google Scholar 

  25. Marchant B, Platnick S, Meyer K, Arnold G T and Riedi J 2016 MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP; Atmos. Meas. Tech. 9 1587–1599, https://doi.org/10.5194/amt-9-1587-2016.

    Article  Google Scholar 

  26. Marek R and Straub J 2001 Analysis of the evaporation coefficient and the condensation coefficient of water; Int. J. Heat Mass. Transfer 44 39–53.

    Article  Google Scholar 

  27. Martin G M, Johnson D W and Spice A 1994 The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds; J. Atmos. Sci. 51 1823–1840.

    Article  Google Scholar 

  28. McCoy D T, Burrows S M, Wood R, Grosvenor D P, Elliott S M, Ma P-L, Rasch P J and Hartmann D L 2015 Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo; Sci. Adv. 1 e1500157, https://doi.org/10.1126/sciadv.1500157.

    Article  Google Scholar 

  29. McCoy D T, Bender F A-M, Grosvenor D P, Mohrmann J K, Hartmann D L, Wood R and Field P R 2018 Predicting decadal trends in cloud droplet number concentration using reanalysis and satellite data; Atmos. Chem. Phys. 18 2035–2047, https://doi.org/10.5194/acp-18-2035-2018.

    Article  Google Scholar 

  30. Meerkotter R and Bugliaro L 2009 Diurnal evolution of cloud base heights in convective cloud fields from MSG/SEVIRI data; Atmos. Chem. Phys. 9 1767–1778.

    Article  Google Scholar 

  31. Meskhidze N and Nenes A 2006 Phytoplankton and cloudiness in the Southern Ocean; Science 314 1419–1423.

    Article  Google Scholar 

  32. Miller M A and Yuter S E 2008 Lack of correlation between chlorophyll a and cloud droplet effective radius in shallow marine clouds; Geophys. Res. Lett. 35 L13807, https://doi.org/10.1029/2008GL03435.

    Article  Google Scholar 

  33. Min Q, Joseph E, Lin Y, Min L, Yin B, Daum P H, Kleinman L L, Wang J and Lee Y N 2012 Comparison of MODIS cloud microphysical properties with in-situ measurements over the Southeast Pacific; Atmos. Chem. Phys. 12 11,261–11,273.

    Article  Google Scholar 

  34. Monahan E C, Spiel D E and Davidson K L 1986 A model of marine aerosol generation via whitecaps and wave disruption; In: Oceanic White-caps (eds) Monahan E and Niocaill G M, D. Reidel, Norwell, Mass, pp. 167–174.

    Chapter  Google Scholar 

  35. Moorthy K K, Suresh Babu S and Satheesh S K 2005 Aerosol characteristics and radiative impacts over the Arabian Sea during the Intermonsoon Season: Results from ARMEX Field Campaign; J. Atmos. Sci. 62 192–206.

    Article  Google Scholar 

  36. Nair V S, Krishna Moorthy K and Suresh Babu S 2013 Influence of continental outflow and ocean biogeochemistry on the distribution of fine and ultrafine particles in the marine atmospheric boundary layer over Arabian Sea and Bay of Bengal; J. Geophys. Res. 118 7321–7331, https://doi.org/10.1002/jgrd.50541.

    Article  Google Scholar 

  37. Nair V S, Jayachandran V N, Kompalli S K, Gogoi M M and Suresh Babu S 2020 Cloud condensation nuclei properties of South Asian outflow over the North Indian Ocean during winter; Atmos. Chem. Phys. 20 3135–3149, https://doi.org/10.5194/acp-20-3135-2020.

    Article  Google Scholar 

  38. Nakajima T and Nakajima T 1995 Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions; J. Atmos. Sci. 52 4043–4059.

    Article  Google Scholar 

  39. O’Dowd C D 2000 New particle formation and fate in the coastal environment (PARFORCE): Objectives and initial achievements; Rep. Ser. Aerosol Sci. 48 5–11.

    Google Scholar 

  40. O’Dowd C D 2001 Biogenic coastal aerosol production and its influence on aerosol radiative properties; J. Geophys. Res. 106 1545–1548.

    Article  Google Scholar 

  41. O’Dowd C D and de Leeuw G 2007 Marine aerosol production: A review of the current knowledge; Phil. Trans. Roy. Soc. A 365 1753–1774.

    Article  Google Scholar 

  42. Patil N, Dave P and Venkataraman C 2017 Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years; Nature Sci. Rep. 7 44996, https://doi.org/10.1038/srep44996.

    Article  Google Scholar 

  43. Platnick S, Meyer K G, King M D, Wind G, Amarasinghe N, Marchant B, Arnold G T, Zhang Z, Hubanks P A, Holz R E, Yang P, Ridgway W L and Riedi J 2017 The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua; IEEE Trans. Geosci. Remote Sens. 55 502–525, https://doi.org/10.1109/TGRS.2016.2610522.

    Article  Google Scholar 

  44. Quinn P K and Bates T S 2011 The case against climate regulation via oceanic phytoplankton sulphur emissions; Nature 480 51–56.

    Article  Google Scholar 

  45. Ramanathan V, Crutzen P J, Lelieveld J, Mitra A P, Althausen D, Anderson J, Andreae M O, Cantrell W, Cass G R, Chung C E, Clarke A D, Coakley J A, Collins W D, Conant W C, Dulac F, Heintzenberg J, Heymsfield A J, Holben B, Howell S, Hudson J, Jayaraman A, Kiehl J T, Krishnamurti T N, Lubin D, McFarquhar G, Novakov T, Ogren J A, Podgorny I A, Prather K, Priestley K, Prospero J M, Quinn P K, Rajeev K, Rasch P, Rupert S, Sadourny R, Satheesh S K, Shaw G E, Sheridan P and Valero F P J 2001 Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze; J. Geophys. Res. 106 28,371–28,398.

    Article  Google Scholar 

  46. Rao P S P, Praveen P S, Chate D M, Ali K, Safai P D and Momin G A 2005 Physical and chemical characteristics of aerosols over Arabian Sea during ARMEX 2002–03; Mausam 56 293–300.

    Google Scholar 

  47. Rao S and Dey S 2020 Consistent signal of aerosol indirect and semi-direct effect on water clouds in the oceanic regions adjacent to the Indian subcontinent; Atmos. Res. 232 104677, https://doi.org/10.1016/j.atmosres.2019.104677.

    Article  Google Scholar 

  48. Riccobono F, Schobesberger S, Scott C E, Dommen J, Ortega I K, Rondo L, Almeida J, Amorim A, Bianchi F, Breitenlechner M, David A, Downard A, Dunne E M, Duplissy J, Ehrhart S, Flagan R C, Franchin A, Hansel A, Junninen H, Kajos M, Keskinen H, Kupc A, Kürten A, Kvashin A N, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Nieminen T, Onnela A, Petäjä T, Praplan A P, Santos F D, Schallhart S, Seinfeld J H, Sipilä M, Spracklen D V, Stozhkov Y, Stratmann F, Tomé A, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Vrtala A, Wagner P E, Weingartner E, Wex H, Wimmer D, Carslaw K S, Curtius J, Donahue N M, Kirkby J, Kulmala M, Worsnop D R and Baltensperger U 2014 Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles; Science 344 717–721.

    Article  Google Scholar 

  49. Rinaldi M, Facchini M C, Decesari S, Carbone C, Finessi E, Mircea M, Fuzzi S, Ceburnis D, Ehn M, Kulmala M, de Leeuw G and O’Dowd C D 2009 On the representativeness of coastal aerosol studies to open ocean studies: Mace Head – a case study; Atmos. Chem. Phys. 9 9635–9646.

    Article  Google Scholar 

  50. Saltzman E S, King D B, Holmen K and Leck C 1993 Experimental determination of the diffusion coefficient of dimethylsulfide in water; J. Geophys. Res. 98C 16,481–16,486.

    Article  Google Scholar 

  51. Sarin M M, Kumar A, Bikkina S, Sudheer A K and Rastogi N 2011 Anthropogenic sulphate aerosols and large Cl-deficit in marine atmospheric boundary layer of tropical Bay of Bengal; J. Atmos. Chem. 66 1–10, https://doi.org/10.1007/s10874-011-9188-z.

    Article  Google Scholar 

  52. Satheesh S K and Srinivasan J 2002 Enhanced aerosol loading over Arabian Sea during the pre-monsoon season: Natural or anthropogenic?; Geophys. Res. Lett. 29 1874, https://doi.org/10.1029/2002GL015687.

    Article  Google Scholar 

  53. Shenoy D M and Kumar M D 2007 Variability in abundance and fluxes of dimethylsulphide in the Indian Ocean; Biogeochemistry 83 277–292.

    Article  Google Scholar 

  54. Shenoy D M, Joseph S, Kumar M D and George M D 2002 Control and interannual variability of dimethyl sulfide in the Indian Ocean; J. Geophys. Res. 107 8008, https://doi.org/10.1029/2001JD000371.

    Article  Google Scholar 

  55. Turner S M, Malin G, Nightingale G D and Liss P S 1996 Seasonal variation of dimethyl sulphide in the North Sea and an assessment of fluxes to the atmosphere; Mar. Chem. 54 243–262.

    Google Scholar 

  56. Tyagi G and Babu K N 2018 Validation and inter-sensor comparison of chlorophyll-a concentration from OCM-2 and MODIS data over Indian CAL-VAL site; Indian J. Geo-Mar. Sci. 47 2147–2154.

    Google Scholar 

  57. United Nations Environment Programme 2008 Wide Spread and Complex Climatic Changes Outlined in New UNEP Project Atmospheric Brown Cloud Report; http://www.unep.org/documents.multilingual/default.asp?DocumentID=550&ArticleID=5978&l=en.

  58. Vinoj V and Satheesh S K 2004 Direct and indirect radiative effects of sea-salt aerosols over Arabian Sea; Curr. Sci. 86 1381–1390.

    Google Scholar 

  59. Wernand M R, van der Woerd H J and Gieskes W W C 2013 Trends in ocean colour and chlorophyll concentration from 1889 to 2000, worldwide; PLoS ONE 8(6) e63766, https://doi.org/10.1371/journal.pone.0063766.

    Article  Google Scholar 

  60. Wilson T W, Ladino L A, Alpert P A, Breckels M N, Brooks I M, Browse J, Burrows S M, Carslaw K S, Huffman J A, Judd C, Kilthau W P, Mason R H, McFiggans G, Miller L A, Nájera J J, Polishchuk E, Rae S, Schiller C L, Si M, Temprado J V, Whale T F, Wong J P S, Wurl O, Yakobi-Hancock J D, Abbatt J P D, Aller J Y, Bertram A K, Knopf D A, Murray B J 2015 A marine biogenic source of atmospheric ice nucleating particles; Nature 525 234–238, PNNL-SA-109270, https://doi.org/10.1038/nature14986.

Download references

Acknowledgements

We thank the Council of Scientific and Industrial Research (CSIR), New Delhi, Science and Engineering Research Board (SERB-DST), New Delhi, and the Directors of CSIR-NIO, Goa and SIC, Regional Centre in Visakhapatnam, and NCCR (MoES), Chennai, for support. MDK acknowledges the support for this project through JC Bose National Fellowship grant by SERB. We are grateful to various data sources and service providers (MODIS (NASA, USA), Reanalysis, CAIPEEX (IITM-MoES, India), VOCALS (EOL-NSF, USA)) for facilitating this study. We are indebted to the reviewer for constructive criticism that helped improve the manuscript considerably. This is CSIR-NIO Contribution no. 6704 supported by Department of Science and Technology (SERB Grant No. SB/S2/JCB-78/2014).

Author information

Affiliations

Authors

Contributions

V D Rao and B Sridevi: Processed satellite data, prepared illustrations, and participated in discussions and manuscript preparation. M Dileep Kumar: Conceptualized the idea, received funds, and participated in discussions, preparation and finalization of the manuscript. V V S S Sarma: Participated in discussions, and finalization of the manuscript.

Corresponding author

Correspondence to M Dileep Kumar.

Additional information

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Communicated by Suresh Babu

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rao, V.D., Kumar, M.D., Sridevi, B. et al. Relations between marine biogeochemical indices and cloud properties over the Arabian Sea. J Earth Syst Sci 130, 143 (2021). https://doi.org/10.1007/s12040-021-01638-7

Download citation

Keywords

  • Dimethyl sulphide
  • cloud droplet number
  • ocean–atmosphere links
  • Arabian Sea
  • biogeochemistry