Skip to main content

Changing variability of sea surface temperature in the post-WWII era

Abstract

Extraordinary multi-seasonal episodes like El Niños of 1982–1983 and 1997–1998 and their widespread teleconnection effects have spurred varied investigations on the changes in sea surface temperature (SST) variability in the post-WWII period. Most of them have been region-specific. We investigate here change in the variance of SST anomaly (SSTA) in the world oceans from 1951–1980 to 1981–2010. Our search for quantitative patterns, in space and time, is aided by a new decomposition of SSTA annual cycle in three orthogonal components, one time-independent, one low frequency (LF, periods: 4–12 months) and one high frequency (HF, periods: 2–3 months). High SSTA variability occurs in small regions clustered near the equator, middle and high latitudes. Sixteen high variability regions (HVR) are identified on the basis of a threshold. Spread over nearly 10% of the ocean area, they occur in four clusters: two in the equatorial cluster, four each in the northern and the southern mid-latitude clusters and six in the Arctic cluster. We find that the plots of HVR-averaged and zonally averaged SSTA variance in 1951–1980 and 1981–2010 show a general tendency of decrease in SSTA variability south of ~15°S and increase north of ~15°S, and a consequential increase in north–south asymmetry. We further find that HVR-averaged HF variance and HVR-averaged LF variance are strongly correlated.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Abram N, Gagan M and Cole J et al. 2008 Recent intensification of tropical climate variability in the Indian Ocean; Nat. Geosci. 1 849–853, https://doi.org/10.1038/ngeo357.

    Article  Google Scholar 

  2. Ashok K, Behera S K and Rao S A et al. 2007 El Niño Modoki and its possible teleconnection; J. Geophys. Res. 112 C11007, https://doi.org/10.1029/2006JC003798.

    Article  Google Scholar 

  3. Brown P, Ming Y and Li W et al. 2017 Change in the magnitude and mechanisms of global temperature variability with warming; Nat. Clim. Change 7 743–748, https://doi.org/10.1038/nclimate3381.

    Article  Google Scholar 

  4. Cai W, Borlace S and Lengaigne M et al. 2014a Increasing frequency of extreme El Niño events due to greenhouse warming; Nat. Clim. Change 4 111–116, https://doi.org/10.1038/nclimate2100.

    Article  Google Scholar 

  5. Cai W, Santoso A and Wang G et al. 2014b Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming; Nature 510 254–258, https://doi.org/10.1038/nature13327.

    Article  Google Scholar 

  6. Cai W, Cowen T and Sullivan A 2009a Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall; Geophys. Res. Lett. 36 L11705, https://doi.org/10.1029/2009GL037604.

    Article  Google Scholar 

  7. Cai W, Pan A and Roemmich D et al. 2009b Argo profiles a rare occurrence of three consecutive positive Indian Ocean Dipole events, 2006–2008; Geophys. Res. Lett. 36(8) L08701, https://doi.org/10.1029/2008GL037038.

    Article  Google Scholar 

  8. Cai W, Santoso A and Wang G et al. 2015a ENSO and greenhouse warming; Nat. Clim. Change 5 849–859, https://doi.org/10.1038/nclimate2743.

    Article  Google Scholar 

  9. Cai W, Wang G and Santoso A et al. 2015b Increased frequency of extreme La Niña events under greenhouse warming; Nat. Clim. Change 5 132–137, https://doi.org/10.1038/nclimate2492.

    Article  Google Scholar 

  10. Cai W, Wang G and Dewitte B et al. 2018 Increased variability of eastern Pacific El Niño under greenhouse warming; Nature 564 201–206, https://doi.org/10.1038/s41586-018-0776-9.

    Article  Google Scholar 

  11. Cai W, Zheng X and Weller E et al. 2013 Projected response of the Indian Ocean Dipole to greenhouse warming; Nat. Geosci. 6 999–1007, https://doi.org/10.1038/ngeo2009.

    Article  Google Scholar 

  12. Chowdary J S, Xie S P and Tokinaga H et al. 2012 Interdecadal variations in ENSO teleconnection to the Indo-western Pacific for 1870–2007; J. Clim. 25(5) 1722–1744, https://doi.org/10.1175/JCLI-D-11-00070.1.

    Article  Google Scholar 

  13. Collins M, An S and Cai W et al. 2010 The impact of global warming on the tropical Pacific Ocean and El Niño; Nat. Geosci. 3 391–397, https://doi.org/10.1038/ngeo868.

    Article  Google Scholar 

  14. Dai T, Dong W and Guo Y et al. 2018 Understanding the abrupt climate change in the mid-1970s from a phase-space transform perspective; J. Appl. Meteorol. Climatol. 57(11) 2551–2560, https://doi.org/10.2307/26675841.

    Article  Google Scholar 

  15. Deser C, Alexander M A and Xie S P et al. 2010 Sea surface temperature variability: Patterns and mechanisms; Ann. Rev. Mar. Sci. 2(1) 115–143, https://doi.org/10.1146/annurev-marine-120408-151453.

    Article  Google Scholar 

  16. Durack P J, Gleckler P J and Purkey S G et al. 2018 Ocean warming: From the surface to the deep in observations and models; Oceanography 31(2) 41–51, https://doi.org/10.5670/oceanog.2018.227.

    Article  Google Scholar 

  17. Frankignoul C and Hasselmann K 1977 Stochastic climate models. Part II: Application to Sea-Surface Temperature Anomalies and Thermocline Variability; Tellus 29(4) 289–305, https://doi.org/10.3402/tellusa.v29i4.11362.

    Article  Google Scholar 

  18. Freund M B, Henley B J and Karoly D J et al. 2019 Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries; Nat. Geosci. 12 450–455, https://doi.org/10.1038/s41561-019-0353-3.

    Article  Google Scholar 

  19. Hartmann D L, Klein Tank A M G and Rusticucci M et al. 2013 Observations: Atmosphere and Ssurface; In: Climate Change 2013: The Physical Science Basis (eds) Stocker T F, Qin D and Plattner G-K et al., Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  20. Huang B, Angel W and Boyer T et al. 2018 Evaluating SST analyses with independent ocean profile observations; J. Clim. 31 5015–5030, https://doi.org/10.1175/JCLI-D-17-0824.1.

    Article  Google Scholar 

  21. Huang B, Liu C and Ren G et al. 2019 The role of buoy and Argo observations in two SST analyses in the global and tropical Pacific oceans; J. Clim. 32 2517–2535, https://doi.org/10.1175/JCLI-D-18-0368.1.

    Article  Google Scholar 

  22. Huang B, Thorne P W and Banzon V F et al. 2017a Extended reconstructed sea surface temperature version 5 (ERSSTv5), Upgrades, validations, and intercomparisons; J. Clim. 30 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    Article  Google Scholar 

  23. Huang B, Thorne P W and Banzon V F et al. 2017b NOAA Extended reconstructed sea surface temperature (ERSST), Version 5, NOAA National Centers for Environmental Information, https://doi.org/10.7289/V5T72FNM.

  24. Hu Z, Kumar A, Jha B et al. 2020 How much of monthly mean precipitation variability over global land is associated with SST anomalies?; Clim. Dyn. 54 701–712, https://doi.org/10.1007/s00382-019-05023-5.

    Article  Google Scholar 

  25. Ihara C, Kushnir Y and Cane M A 2008 Warming trend of the Indian Ocean SST and Indian Ocean Dipole from 1880 to 2004; J Clim. 21 2035–2046, https://doi.org/10.1175/2007JCLI1945.1.

    Article  Google Scholar 

  26. Kim S, Cai W and Jin F et al. 2014 Response of El Niño sea surface temperature variability to greenhouse warming; Nat. Clim. Change 4 786–790, https://doi.org/10.1038/nclimate2326.

    Article  Google Scholar 

  27. Mann M E, Steinman B A and Miller S K 2020 Absence of internal multidecadal and interdecadal oscillations in climate model simulations; Nat. Commun. 11 49, https://doi.org/10.1038/s41467-019-13823-w.

    Article  Google Scholar 

  28. Marshall J and Plumb R A 2007 Atmosphere, Ocean, and Climate: An Introduction; Academic Press, Amsterdam, ISBN-13: 978-0125586917.

  29. McPhaden M 1999 The child prodigy of 1997–98; Nature 398 559–561, https://doi.org/10.1038/19193.

    Article  Google Scholar 

  30. McPhaden M J, Zebiak S E and Glanz M H 2006 ENSO as an integrating concept in Earth Science; Science 314 1740–1745, https://doi.org/10.1126/science.1132588.

    Article  Google Scholar 

  31. Philander S G H 1983 Meteorology: Anomalous El Niño of 1982–83; Nature 305 16, https://doi.org/10.1038/305016a0.

    Article  Google Scholar 

  32. Powell A M Jr and Xu J 2012 The 1977 global regime shift: A discussion of its dynamics and impacts in the eastern Pacific ecosystem; Atmos.-Ocean 50(4) 421–436, https://doi.org/10.1080/07055900.2012.716023.

    Article  Google Scholar 

  33. Rana S, McGregor J and Renwick J 2019 Dominant modes of winter precipitation variability over Central Southwest Asia and inter-decadal change in the ENSO teleconnections; Clim. Dyn. 53 5689–5707, https://doi.org/10.1007/s00382-019-04889-9.

    Article  Google Scholar 

  34. Roy I, Tedeschi R G and Collins M 2019 ENSO teleconnections to Indian summer monsoon under changing climate; Int. J. Clim. 39(6) 3031–3042, https://doi.org/10.1002/joc.5999.

    Article  Google Scholar 

  35. Saji N, Goswami B and Vinayachandran P et al. 1999 A dipole mode in the tropical Indian Ocean; Nature 401 360–363, https://doi.org/10.1038/43854.

    Article  Google Scholar 

  36. Seager R, Cane M and Henderson N et al. 2019 Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases; Nat. Clim. Change 9 517–522, https://doi.org/10.1038/s41558-019-0505-x.

    Article  Google Scholar 

  37. Smith T M and Reynolds R W 2003 Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997); J. Clim. 16 1495–1510, https://doi.org/10.1175/1520-0442-16.10.1495.

    Article  Google Scholar 

  38. Timmermann A, An S and Kug J et al. 2018 El Niño-Southern Oscillation complexity; Nature 559 535–545, https://doi.org/10.1038/s41586-018-0252-6.

    Article  Google Scholar 

  39. Tokinaga H and Xie S 2011 Weakening of the equatorial Atlantic cold tongue over the past six decades; Nat. Geosci. 4 222–226, https://doi.org/10.1038/ngeo1078.

    Article  Google Scholar 

  40. Vega-Westhoff B and Sriver R L 2017 Analysis of ENSO’s response to unforced variability and anthropogenic forcing using CESM; Sci. Rep. 7 18047, https://doi.org/10.1038/s41598-017-18459-8.

    Article  Google Scholar 

  41. Wang B and An S I 2001 Why the properties of El Niño changed during the late 1970s; Geophys. Res. Lett. 28(19) 3709–3712, https://doi.org/10.1029/2001GL012862.

    Article  Google Scholar 

  42. Yeh S, Kug J and Dewitte B et al. 2009 El Niño in a changing climate; Nature 461 511–514, https://doi.org/10.1038/nature08316.

    Article  Google Scholar 

  43. Yajnik K S 2016 State space analysis of ocean surface warming on decadal scale; Curr. Sci. 111(5) 843–852.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank V Mudkavi, Head, CSIR-4PI, for permitting us to use the Institute facilities, P S Swathi and M K Sharada for a variety of assistance, Thangavelu and his colleagues for system support, and finally NOAA for putting ERSSTv5 dataset and Ferret software in the public domain.

Author information

Affiliations

Authors

Contributions

The first author KSY formulated the methodology for data analysis, wrote computer programs, carried out computations, obtained numerical and graphical results and wrote the manuscript. The second author CKD downloaded, checked and organized global SST datasets, provided critical system support and assisted in writing the manuscript.

Corresponding author

Correspondence to Kirit S Yajnik.

Additional information

Communicated by Parthasarathi Mukhopadhyay

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yajnik, K.S., Devasana, C.K. Changing variability of sea surface temperature in the post-WWII era. J Earth Syst Sci 130, 144 (2021). https://doi.org/10.1007/s12040-021-01637-8

Download citation

Keywords

  • Climate change
  • El Niño
  • sea surface temperature
  • interannual variability
  • seasonality
  • climate science
  • orthogonal decomposition
  • normal modes