Skip to main content

Advertisement

Log in

Influence of phytoplankton pigment composition and primary production on pCO2 levels in the Indian Ocean

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The tropical Indian Ocean is a net sink for the carbon dioxide (CO2) in the atmosphere and phytoplankton production plays a crucial role in CO2 fixation and determines the direction of CO2 flux at the sea-to-air interface. In order to assess the influence of phytoplankton composition and primary production on pCO2 levels in the Indian Ocean, sampling was conducted at 25 stations during the spring intermonsoon period under the auspices of the Indian GEOTRACES program. The pCO2 was significantly correlated with salinity due to the discharge of low pCO2 water by major rivers to the Bay of Bengal (BoB). The stronger negative correlation observed between pCO2 and major phytoplankton marker pigments, net primary production and oxygen saturation levels suggesting significant influence of biological processes on pCO2 levels in the Indian Ocean. This study indicates that pCO2 levels are strongly modulated by biological processes than hitherto hypothesized as solubility pump in the Indian Ocean.

Research highlights

  • Surface pCO2 levels are undersaturated in the Indian Ocean compared to atmosphere, except Arabian Sea.

  • Oligotrophic conditions prevailed in the entire tropical Indian Ocean.

  • Picophytoplankton (cyanobacteria) is the dominant phytoplankton in the Indian Ocean.

  • 4.Significant relation between phytoplankton groups and pCO2 indicates strong biological control on surface pCO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Armstrong R A, Lee C, Hedges J I, Honjo S and Wakeham A G 2002 A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals; Deep-Sea Res. Part II 49 219–236.

  • Anand S S, Rengarajan R, Sarma V V S S, Sudheer A K, Bhushan R and Singh S K 2017 Spatial variability of upper ocean POC export in the Bay of Bengal and the Indian Ocean determined using particle-reactive 234Th; J. Geophys. Res. (Oceans), https://doi.org/10.1002/2016jc012639.

    Article  Google Scholar 

  • Anand S, Rengarajan R and Sarma V V S S 2018 234Th based carbon export flux along the Indian GEOTRACES GI02 section in the Arabian Sea and the Indian Ocean; Global Biogeochem. Cycles, https://doi.org/10.1002/2017GB005847.

    Book  Google Scholar 

  • Atekwana E A, Tedesco L P and Jackson L R 2003 Dissolved inorganic carbon (DIC) and hydrologic mixing in a subtropical riverine estuary, southwest Florida, USA; Estuaries 26 1391–1400.

    Article  Google Scholar 

  • Bandyopadhyay D, Biswas H and Sarma V V S S 2017 Analysis of spatial and vertical distribution of phytoplankton communities from pigment signature along the western coastal Bay of Bengal during SW monsoon; Estuar. Coasts 40 1066–1088.

  • Bauer J E and Druffel E R M 1998 Ocean margins as a significant source of organic matter to the open ocean; Nature 392 482–485.

    Article  Google Scholar 

  • Barber R T, Marra J, Bidigare R C, Codispoti L A, Halpern D, Johnson Z, Latasa M, Goericke R and Smith S L 2001 Primary production and its regulation in the Arabian Sea during 1995; Deep-Sea Res. Part II 48 1127–1172.

  • Bates N R, Pequignet A C and Sabine C L 2006a Ocean carbon cycling in the Indian Ocean: 2. Estimates of net community production; Global Biogeochem. Cycles 20 GB3021, https://doi.org/10.1029/2005GB002492.

  • Bates N R, Pquignet A C and Sabine C L 2006b Ocean carbon cycling in the Indian Ocean: 1. Spatiotemporal variability of inorganic carbon and air–sea CO2 gas exchange; Global Biogeochem. Cycles 20 GB3020, https://doi.org/10.1029/2005gb002491.

  • Behrenfield M J and Falkowski P G 1997 Photosynthetic rates derived from satellite-based chlorophyll concentration; Limnol. Oceanogr. 42 1–10.

    Article  Google Scholar 

  • Bhattathiri P M A, Pant A, Sawant S, Gauns M, Matondkar S G P and Mohanraju R 1996 Phytoplankton production and chlorophyll distribution in the eastern and central Arabian Sea in 1994–1995; Curr. Sci. 71 857–862.

    Google Scholar 

  • Bopp L, Resplandy L, Orr J C, Doney S C, Dunne J P, Gehlen M, Halloran P, Heinze C, Ilyina T, Séférian R, Tjiputra J and Vichi M 2013 Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models; Biogeosci. 10 6225–6245.

    Article  Google Scholar 

  • Brown M S, Munro D R, Feehan C J, Sweeney C, Ducklow H W and Schofield O M 2019 Enhanced oceanic CO2 uptake along the rapidly changing West Antarctic Peninsula; Nat. Clim. Change 9 678–683.

    Google Scholar 

  • Buitenhuis E, van der Wal and de Baar H 2001 Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide: A field and mesocosm study derived simulation; Global Biogeochem. Cycles 15 577–587.

  • Carritt D E and Carpenter J H 1966 Comparison and evaluation of currently employed modifications of Winkler method for determining dissolved oxygen in seawater – a Nasco report. J. Mar. Res. 24 286.

    Google Scholar 

  • Chavez F P and Barber R T 1987 An estimate of new production in the equatorial Pacific; Deep-Sea Res. 34 1229–1243.

  • Dandapat S, Gnanaseelan C and Parekh A 2020 Impact of excess and deficit river runoff on Bay of Bengal upper ocean characteristics using an ocean general circulation model; Deep-Sea Res. Part II 172 104714.

    Article  Google Scholar 

  • Dalabehera H B and Sarma V V S S 2020 Physical forcing controls spatial variability in primary production in the Indian Ocean; Deep-Sea Res. Part II, https://doi.org/10.1016/j.dsr2.2020.104906.

    Article  Google Scholar 

  • DOE 1998 Hand book of methods for the analysis of the various parameters of the carbon dioxide system in seawater, version 2 (eds) Dickson A G and Goyet C, Rep. ORNL/CDIAC-74, Oak Ridge Natl. Lab., Oak Ridge, Tenn.

  • Frankignoulle M, Canon C and Gattuso J P 1994 Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO2; Limnol. Oceanogr. 39 458–462.

    Article  Google Scholar 

  • Garcia H E and Gordon G I 1992 Oxygen solubility in seawater: Better fitting equation; Limnol. Oceanogr. 37 1307–1312.

    Article  Google Scholar 

  • GEOTRACES Science Plan 2006 An International study of the marine biogeochemical cycles of trace elements and their isotopes. Scientific Committee on Ocean Research (SCOR) (https://geotracesold.sedoo.fr/libraries/documents/Science_plan.pdf).

  • Goyet C, Millero F J, Poisson A and Shafer D K 1993 Temperature dependence of CO2 fugacity in seawater; Mar. Chem. 44 205–219.

    Article  Google Scholar 

  • Ghosh P, Chakrabarti R and Bhattacharya S K 2013 Short-and long-term temporal variations in salinity and the oxygen, carbon and hydrogen isotopic compositions of the Hooghly Estuary water, India; Chem. Geol. 335 118–127.

    Article  Google Scholar 

  • Grasshoff K, Ehrhardt M and Kremling K (eds) 1992 Methods of Seawater Analysis; Verlag, Chemie, Weinheim.

    Google Scholar 

  • Hama T, Miyazaki T, Ogawa Y, Iwakuma T, Takahashi M, Otsuki A and Ichimura S 1983 Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope; Mar. Biol. 73 31–36.

    Article  Google Scholar 

  • Hedge S, Anil A C, Patil J S, Mitbavkar S, Venkat K and Gopalakrishna V V 2008 Influence of environmental settings on the prevalence of Trichodesmium spp. in the Bay of Bengal; Mar. Ecol. Prog. Ser. 356 93–101.

  • Heukelem L V and Thomas C S 2001 Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments; J. Chromatogr. 910 31–49.

    Article  Google Scholar 

  • IPCC 2013 Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, (eds) Stocker T F, Qin D, Plattner G-K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V and Midgley P M, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Jyotibabu R, Madhu N V, Maheswaran P A, Asha Devi C R, Balasubramanian T, Nair K K C and Achuthankutty C T 2006 Environmentally-related seasonal variation in symbiotic associations of heterotrophic dinoflagellates with cyanobacteria in the western Bay of Bengal; Symbiosis 42 51–58.

    Google Scholar 

  • Kumar M D, Naqvi S W A, George M D and Jayakumar D A 1996 A sink for atmospheric carbon dioxide in the northeast Indian Ocean; J. Geophys. Res. 101 18,121–18,125.

    Article  Google Scholar 

  • Liu H, Campbell L, Landry M R, Nolla H A, Brown S L and Constantinou J 1998 Prochlorococcus and Synechococcus growth rates and contributions to production in the Arabian Sea during the 1995 Southwest and Northeast monsoons; Deep-Sea Res. Part II 45 2327–2352.

  • Legendre L and Rassoulzadegan F 1995 Plankton and nutrient dynamics in marine waters; Ophelia 41 153–172.

    Article  Google Scholar 

  • Legendre L and Rivkin R 2002 Fluxes of carbon in the upper ocean: Regulation by food-web control nodes; Mar. Ecol. Prog. Ser. 242 95–109.

    Article  Google Scholar 

  • Lewis E and Wallace D W R 1998 Program Developed for CO2 System Calculations; Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN. ORNL/CDIAC-105.

  • Louanchi F, Metzl N and Poisson A 1996 Modelling the monthly sea surface pCO2 fields in the Indian Ocean; Mar. Chem. 55 265–279.

    Article  Google Scholar 

  • Lutz M, Dunbar R and Caldeira K 2002 Regional variability in the vertical flux of particulate organic carbon in the ocean interior; Global Biogeochem. Cycles 16, https://doi.org/10.1029/2000gb001383.

  • McCarthy J J, Garside C and Nevins J L 1999 Nitrogen dy-namics during the Arabian Sea northeast monsoon; Deep Sea Res. Part II 46 1623–1664.

    Article  Google Scholar 

  • Metzl N 2009 Decadal increase of oceanic carbon dioxide in Southern Indian Ocean surface waters (1991–2007); Deep-Sea Res. Part II 56 607–619.

    Article  Google Scholar 

  • Millero F J, Graham T B, Huang F, Bustos-Serrano H and Perrot D 2006 Dissociation constants of carbonic acid in seawater as a function of salinity and temperature; Mar. Chem. 100 80–94.

    Article  Google Scholar 

  • Moreau S, Schloss I R, Mostajir B, Demers S, Almandoz G O, Ferrario M E and Ferreyra G A 2012 Influence of microbial community composition and metabolism on air−sea ΔpCO2 variation off the western Antarctic Peninsula; Mar. Ecol. Prog. Ser. 446 45–59.

    Article  Google Scholar 

  • Moreau S, di Fiori E, Schloss I R, Almandoz G O, Esteves J L, Paparazzo F E and Ferreyra G A 2013 The role of phytoplankton composition and microbial community metabolism in sea–air ΔpCO2 variation in the Weddell Sea; Deep-Sea Res. Part I 82 44–59.

  • Morrison J M, Codispoti L A, Gaurin S, Jones B, Manghnani V and Zheng Z 1998 Seasonal variations of hydrographic and nutrient fields during the U.S. JGOFS Arabian Sea process study; Deep-Sea Res. Part II 45 2053–2101.

  • Nelson D M, Tréguer P, Brzezinski M A, Leynaert A and Quéguinet B 1995 Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation; Global Biogeochem. Cycles 9 359–372.

    Article  Google Scholar 

  • Paul J T, Ramaiah N, Gauns M and Fernandes V 2007 Preponderance of a few diatom species among the highly diverse microphytoplankton assemblages in the Bay of Bengal; Mar. Biol. 152 63–75.

    Article  Google Scholar 

  • Ramaswamy V and Gaye B 2006 Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean; Deep-Sea Res. Part I 53 271–293.

  • Racape V, Lo Monaco C, Metzl N and Pierre C 2010 Summer and winter distribution of d13CDIC in surface waters of the South Indian Ocean (20oS–60oS); Tellus 62B 660–673.

    Article  Google Scholar 

  • Regaudie-de-Gioux A, Lasternas S, Agusti S and Duarte C M 2014 Comparing marine primary production estimates through different methods and development of conversion equations; Front. Mar. Sci., https://doi.org/10.3389/fmars.2014.00019.

    Book  Google Scholar 

  • Roxy M K, Ritika K, Terray P, Murtugudde R, Ashok K and Goswami B N 2015a Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land–sea thermal gradient; Nat. Commun. 6 7423.

    Article  Google Scholar 

  • Roxy M K, Modi A, Murtugudde R, Valsala V, Panickal S, Kumar S P, Ravichandran M, Vichi M and Levy M 2015b A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean; Geophys. Res. Lett. 43 826–833.

    Article  Google Scholar 

  • Sabine V L, Key R M, Johnson K M, Millero F J, Poisson A, Sarmiento J L, Wallace D W R and Winn C D 1999 Anthropogenic CO2 inventory of the Indian Ocean; Global Biogeochem. Cycles 13 179–198.

    Article  Google Scholar 

  • Sabine C L, Key R M, Feely R A and Greeley D 2002 Inorganic carbon in the Indian Ocean: Distribution and dissolution processes; Global Biogeochem. Cycles 16 1067, https://doi.org/10.1029/2002GB001869.

    Article  Google Scholar 

  • Sabine C L, Wanninkhof R, Key R M, Goyet C and Millero F J 2000 Seasonal CO2 fluxes in the tropical and subtropical Indian Ocean; Mar. Chem. 72 33–53.

    Article  Google Scholar 

  • Sackett W M, Netratanawong T and Holmes M E 1997 Carbon‐13 variations in the dissolved inorganic carbon in estuarine waters; Geophys. Res. Lett. 24 21–24.

    Article  Google Scholar 

  • Samanta S 2017 Isotope and trace element geochemistry of the Ganga (Hooghly) River estuary, India: Sources, cycling and fluxes, Doctoral dissertation, Indian Institute of Science Education and Research Kolkata, India.

  • Sarma V V S S 1998 Variability in Forms and Fluxes of Carbon Dioxide in the Arabian Sea; PhD Thesis, Goa University, Goa, India, 256p.

  • Sarma V V S S, Kumar M D and George M D 1998 The central and eastern Arabian Sea as a perennial source of atmospheric carbon dioxide; Tellus 50B 179–184.

    Article  Google Scholar 

  • Sarma V V S S, Kumar M D, Gauns M and Madhupratap M 2000 Seasonal controls on surface pCO2 in the central and eastern Arabian Sea; Proceed. Indian Acad. Sci. (Earth Planet. Sci.) 109 471–479.

  • Sarma V V S S 2003 Monthly variability in surface pCO2 and net air–sea fluxes of CO2 in the Arabian Sea; J. Geophys. Res. 108, https://doi.org/10.1029/2001jc001062.

  • Sarma V V S S 2004 Net plankton community production in the Arabian Sea based on O2 mass balance model; Global Biogeochem. Cycles 18 GB4001, https://doi.org/10.1029/2003gb002198.

  • Sarma V V S S, Krishna M S, Rao V D, Viswanadham R, Kumar N A and Kumar T R et al. 2012a Sources and sinks of CO2 in the west coast of Bay of Bengal; Tellus-B 64 10961, https://doi.org/10.3402/tellusb.v6i0.10961.

    Article  Google Scholar 

  • Sarma V V S S, Viswanadham R, Rao G D, Prasad V R, Kumar B S K, Naidu S A, Kumar N A, Rao D B, Sridevi T, Krishna M S, Reddy N P C, Sadhuram Y and Murty T V R 2012b Carbon dioxide emissions from Indian monsoonal estuaries; Geophys. Res. Lett. 39 L03602, https://doi.org/10.1029/2011gl050709.

    Article  Google Scholar 

  • Sarma V V S S, Krishna K S, Viswanadham R, Rao G D, Rao V D, Sridevi B, Kumar B S K, Prasad V R, Subbaiah Ch V, Acharyya T and Bandopadhyay D 2013a Intensified oxygen minimum zone on the western shelf of Bay of Bengal during summer monsoon: Influence of river discharge; J. Oceanogr. 69 45–55.

    Article  Google Scholar 

  • Sarma V V S S, Lenton A, Law R M, Metzl N, Patra P K, Doney S, Lima I D, Dlugokencky E, Ramonet M and Valsala V 2013b Sea–air CO2 fluxes in the Indian Ocean between 1990 and 2009; Biogeosci. 10 1–18.

    Article  Google Scholar 

  • Sarma V V S S, Rao G D, Viswanadham R, Sherin C K, Salisbury J, Omand M M, Mahadevan A, Murty V S N, Shroyer E L, Baumgartner M and Stafford K 2016 Effects of freshwater stratification on nutrients, dissolved oxygen and phytoplankton in the Bay of Bengal; Oceanography 29 126–135.

    Article  Google Scholar 

  • Sarma V V S S, Yadav K and Behera S 2019 Role of eddies on organic matter production and f-ratios in the Bay of Bengal; Mar. Chem. 210 13–23.

    Article  Google Scholar 

  • Sarma V V S S and Dalabehera H B 2019 New and primary production in the western Indian Ocean during fall monsoon; Mar. Chem. 215 103687.

    Article  Google Scholar 

  • Sarthou G, Timmermans K R, Blain S and Tréguer P 2005 Growth physiology and fate of diatoms in the ocean: A review; J. Sea Res. 53 25–42.

    Article  Google Scholar 

  • Schloss I R, Ferreyra G A, Ferrario M E, Almandoz G O, Codina R, Alejandro A, Balestrini B, Ochoa C F, Pino H A and Poisson A 2007 Role of plankton communities in sea–air differences in pCO2 in the SW Atlantic Ocean; Mar. Ecol. Prog. Ser. 332 93–106.

    Article  Google Scholar 

  • Schott F A and McCreary J P 2001 The monsoon circulation of the Indian Ocean; Prog. Oceanogr. 51 1–123.

    Article  Google Scholar 

  • Shankar D, Remya R, Vinayachandran P N, Chatterjee A and Behera A 2015 Inhibition of mixed-layer deepening during winter in the northeastern Arabian Sea by the West India Coastal Current; Clim. Dyn. 47 1049–1072, https://doi.org/10.1007/s00382-015-2888-3.

    Article  Google Scholar 

  • Sherin C K 2019 Variability in efficiency of biological pump in the Indian Ocean using stable isotopes of carbon and nitrogen; PhD thesis, Academy of Scientific and Innovative Research (AcSIR) Delhi, pp. 1–147.

  • Sherin C K, Sarma V V S S, Rao G D, Viswanadham R, Omand R R and Murty V S N 2019 New to total primary production ratio (f-ratio) in the Bay of Bengal using isotopic composition of suspended particulate organic carbon and nitrogen; Deep-Sea Res., https://doi.org/10.1016/j.dsr.2018.06.002.

    Article  Google Scholar 

  • Shetye S, Sudhakar M, Jena B and Mohan R 2013 Occurrence of nitrogen mixing cyanobacterium Trichodesmium under elevated pCO2 conditions in the Western Bay of Bengal; Int. J. Oceanogr. 8, https://doi.org/10.1155/2013/350465.

  • Surge D M and Lohmann K C 2002 Temporal and spatial differences in salinity and water chemistry in SW Florida estuaries: Effects of human-impacted watersheds. Estuaries 25 393–408.

    Article  Google Scholar 

  • Takahashi T, Sutherland S C, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely R A, Sabine C, Olafsson J and Nojiri Y 2002 Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects; Deep-Sea Res. Part II 49 1601–1622.

  • Takao S, Nakaoka S I, Hashihama G, Shimada K, Inoue H Y, Hirawake T, Kanda J, Hashida G and Suzuki K 2020 Effects of phytoplankton community composition and productivity on sea surface pCO2 variations in the Southern Ocean; Deep-Sea Res. Part I 103263, https://doi.org/10.1016/j.dsr.2020.103263.

  • Trott C B, Subrahmanyam B, Murty V S N and Shriver J F 2019 Large‐scale fresh and salt water exchanges in the Indian Ocean; J. Geophys. Res. Oceans 124, https://doi.org/10.1029/2019jc015361.

  • Tréguer P and Pondaven P 2000 Silica control of carbon dioxide; Nature 406 358–359.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof S K Singh for co-ordinating the Indian GEOTRACES programs. I would like to thank all the participants from CSIR-NIO and PRL for their help during collection of samples. We would like to thank the Ministry of Earth Science for funding the project and also allotting ship time onboard ORV Sagar Kanya. We also like to thank the anonymous reviewer for his comments and suggestions for improving the presentation of the results. This has NIO contribution number 6678.

Author information

Authors and Affiliations

Authors

Contributions

V V S S Sarma: Conceptualized the idea, analysis of DIC, TA, pH, receiving funding, preparation of first draft of the manuscript. M H K Prasad: Collection of samples, analysis of nutrients, and pigments data. H Dalabehera: Collection of samples, and primary production experiments onboard and dissolved oxygen measurements. All authors contributed to finalizing the manuscript.

Corresponding author

Correspondence to V V S S Sarma.

Additional information

Communicated by Joydip Mukhopadhyay

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, V.V.S.S., Prasad, M.H.K. & Dalabehera, H.B. Influence of phytoplankton pigment composition and primary production on pCO2 levels in the Indian Ocean. J Earth Syst Sci 130, 85 (2021). https://doi.org/10.1007/s12040-021-01598-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01598-y

Keywords

Navigation