Skip to main content

Advertisement

Log in

Compositional and morphological analysis of Gassendi crater

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Gassendi impact crater is located on the western side of the visible lunar hemisphere just north of Mare Humorum. It has a diameter of 110 km, and it is a Floor Fractured Crater (FFC) belonging to Class-3 type that exhibits a wide annular depression or moat. Is Gassendi crater formed due to igneous intrusion or viscous relaxation? To investigate this, the analysis explores the compositional and morphological dimensions of the crater. The area studied has been found to contain various minerals such as LCP (Low Calcium Pyroxene), HCP (High Calcium Pyroxene), olivine, plagioclase, and mixtures of pyroxene and plagioclase. To differentiate between similar spectral profiles, Integrated Band Depth map (IBD) and Band Depth Parameter (BD) maps are generated using the M3 data. Features such as central peak complex, isolated mound, fractures, rimae, wall terraces, wall slumps, etc., have been identified and marked in the morphological map. We have also studied the morphometrical aspects of all the morphological features. Another impact crater just on the northern rim of Gassendi, Gassendi A crater shows the presence of LCP and olivine mineral along with extensive slumping, melt pool, and distorted northern rim. We have mapped the three mare regions towards the south of the crater floor and estimated their ages by using the CSFD technique. The present appearance of the Gassendi crater is mostly due to past volcanic activities rather than the result of the impact event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25

Similar content being viewed by others

References

  • Adams J B and Goullaud L H 1978 Plagioclase feldspars: Visible and near infrared diffuse reflectance spectra as applied to remote sensing; Lunar Planet Sci. Confer. Proc. 9 2901–2909.

    Google Scholar 

  • Antonenko I, Head J W, Mustard J F and Hawke B R 1995 Criteria for the detection of lunar cryptomaria; Earth Moon Planets 69 141–172.

    Article  Google Scholar 

  • Bhatt H, Chauhan P and Solanki P 2020 Compositional mapping and the evolutionary history of Mare Tranquillitatis; J. Earth Syst. Sci. 129(45) 1–14.

    Google Scholar 

  • Boardman J W, Pieters C M, Green R O, Lundeen S R, Varanasi P, Nettles J, Petro N, Isaccson P, Besse S and Taylor L A 2011 Measuring moonlight: An overview of the spatial properties, lunar coverage, selenolocation and related Level 1B products of the Moon Mineralogy Mapper; J. Geophys. Res.: Planets 116 E6.

    Article  Google Scholar 

  • Brearley A J and Jones R H 1998 Chondritic meteorites; In: Mineralogical diversity and geology of Humboldt crater derived using Moon Mineralogy Mapper data (eds) Martinot M, Besse S, Flahaut J, Quantin-Nataf C, Lozac’h L and van Westrenen W; J. Geophys. Res.: Planets 123 612–629.

  • Burg J P 2014 Brittle faulting, http://www.files.ethz.ch/structuralgeology/JPB/files/English/2faulting.pdf.

  • Burns R G 1970 Crystal field spectra and evidence of cation ordering in olivine minerals; Amer. Mineral. 55 1608–1632.

    Google Scholar 

  • Chandnani M, Herrick R R and Kramer G Y 2019 Geologic analyses of the causes for morphological variations in Lunar Craters within the simple-to-complex transition; J. Geophys.: Res. Planets 124(5) 1238–1265.

    Google Scholar 

  • Chauhan M, Bhattacharya S, Pathak S and Chauhan P 2018 Remote spectral-compositional analysis of basalt mineralogy at Hansteen-Billy, Moon; Meteor. Planet. Sci. 53(12) 2583–2595.

    Article  Google Scholar 

  • Chevrel S and Pinet P C 1992 Revisited geology of Gassendi crater from Earth-based Near-Infrared Multispectral Solid State Imaging; Proc. Lunar Planet. Sci. 22 249–258, Lunar and Planetary Institute, Houston.

  • Chin G, Brylow S, Foote M, Garvin J, Kasper J, Keller J, Litvak M, Mitrofanov I, Paige D, Raney K, Robinson M, Sanin A, Smith D, Spence H, Spudis P, Stern S A and Zuber M 2007 Lunar reconnaissance orbiter overview: The instrument suite and mission; Space Sci. Rev. 129 391–419.

    Article  Google Scholar 

  • Cintala M J, Wood C A and Head J W 1977 The effects of target characteristics on fresh crater morphology: Preliminary results for the Moon and Mercury; Lunar Sci. Conf. 8 3409–3425.

    Google Scholar 

  • Clark R N and Roush T L 1984 Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications; J. Geophys. Res.: Solid Earth 89 6329–6340.

    Article  Google Scholar 

  • de Hon R A 1980 Variations in interior morphology of 15–20 km lunar craters: Implications for a major subsurface discontinuity; Lunar Planet Sci. Conf. 11 2207–2219.

    Google Scholar 

  • Jozwiak L M, Head J W, Zuber M T, Smith D E and Neumann G A 2012 Lunar floor-fractured craters: Classification, distribution, origin and implications for magmatism and shallow crustal structure; J. Geophys. Res.: Planets 117 E11.

    Article  Google Scholar 

  • Giguere T A, Hawke B R, Boyce J M, Gillis-Davis J J, Lawrence S J, Stopar J D, Gaddis L R, Gustafson J O and the LROC Science Team 2016 The Volcanic processes of the Gassendi crater interior; Lunar Planet. Sci. Conf. 47 1884.

    Google Scholar 

  • Giguere T A, Hawke B R, Gillis-Davis J J, Lemelinc M, Boyce J M, Tranga D, Lawrence B A, Gaddis L R, Blewett D T, Gustafson J O, Peterson C A and Runyon C R 2020 Volcanic Processes in the Gassendi Region of the Moon; J. Geophys. Res.: Planets, https://doi.org/10.1029/2019je006034.

  • Hargitai H, Byrne P K and Korteniemi J 2015 Fracture; In: Encyclopedia of Planetary Landforms (eds) Hargitai H and Kereszturi Á, Springer, New York, NY, pp. 794–801.

    Chapter  Google Scholar 

  • Hargitai H and Ohman T 2015 Complex crater; In: Encyclopedia of Planetary Landforms (eds) Hargitai H and Kereszturi Á, Springer, New York, NY, pp. 340–353.

    Chapter  Google Scholar 

  • Hargitai H and Watters W A 2015 Simple Crater; In: Encyclopedia of Planetary Landforms (eds) Hargitai H and Kereszturi Á, Springer, New York, NY, pp. 1939–1946.

    Chapter  Google Scholar 

  • Head J W 1976 The significance of substrate characteristics in determining morphology and morphometry of lunar craters; Lunar Sci. Conf. 7 2913–2929.

    Google Scholar 

  • Howard K A and Wilshire H G 1975 Flows of impact melt at lunar craters, U.S. Geological Survey; J. Res. 3 237–251.

    Google Scholar 

  • Kaula W M 1979 Thermal evolution of Earth and Moon growing by planetesimal impacts; J. Geophys. Res. 84(2) 999–1008.

    Article  Google Scholar 

  • Kaur P, Bhattacharya S, Chauhan P and Kumar A K 2013 Mineralogy of Mare Serenitatis on the near side of the Moon based on Chandrayaan-1 Moon Mineralogy Mapper (M3) observations; Icarus 222(1) 137–148.

    Article  Google Scholar 

  • Klima R L, Dyar M D and Pieters C M 2011 Near-infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure; Meteor. Planet. Sci. 46(3) 379–395.

    Article  Google Scholar 

  • Klima R L, Pieters C M and Dyar M D 2007 Spectroscopy of synthetic Mg–Fe pyroxenes I: Spin-allowed and spin-forbidden crystal field bands in the visible and near-infrared; Meteor. Planet. Sci. 42(2) 235–253.

    Article  Google Scholar 

  • Kneissl T and Michael G 2013 Crater size-frequency measurements on linear features-buffered crater counting in ArcGIS; 44th Lunar Planet. Sci. Conf., 1079p.

  • Koeberl C 2009 Central uplift formation in Complex impact craters – Comparison of lunar and terrestrial craters; Lunar Reconnaissance Orbiter Science Targeting Meeting, 6030p.

  • Kuiper G P 1954 On the Origin of the Lunar Surface Features; Proc. Natl. Acad. Sci. U.S.A. 40(12) 1096–1112.

    Article  Google Scholar 

  • Kumar P S, Kumar A S, Keerthi V, Goswami J N, Krishna B G and Kumar A S K 2011 Chandrayaan-1 observation of distant secondary craters of Copernicus exhibiting central mound morphology: Evidence for low velocity clustered impacts on the Moon; Planet. Space Sci. 59(9) 870–879.

    Article  Google Scholar 

  • Lucey P G and Hawke B R 1987 A remote mineralogic perspective on gabbroic units in the lunar highland; Lunar Planet Sci. Conf. 18 355–363.

    Google Scholar 

  • Lucey P G, Blewett D T, Johnson J L, Taylor G J and Hawke B R 1996 Lunar titanium content from UV-VIS measurements (abstract); Lunar Planet. Sci. XXVII 781–782.

    Google Scholar 

  • Lucey P G, Blewett D T and Hawke B R 1998 Mapping the FeO and TiO2 content of the lunar surface multispectral imagery; J. Geophys. Res. 103 3679–3699.

    Article  Google Scholar 

  • Lucey P G, Blewett D T and Jolliff B L 2000 Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images; J. Geophys.: Res. Planets 105 20,297–20,305.

    Article  Google Scholar 

  • Lundeen S, McLaughlin S and Alanis R 2011 Moon Mineralogy Mapper Data Product Software interface specification, PDS document version 9.10, Jet Propulsion Laboratory, JPL D-39032.

  • Martinot M, Besse S, Flahaut J, Quantin-Nataf C, Lozac’h L and van Westrenen W 2017 Mineralogical diversity and geology of Humboldt crater derived using Moon Mineralogy Mapper data; J. Geophys.: Res. Planets 123 612–629.

    Google Scholar 

  • Melosh H J 1989 Impact cratering: A geological process. Central Peak Crater; In: Encyclopedia of Planetary Landforms (eds) Hargitai H and Kereszturi Á, Springer, New York, NY, pp. 249–256.

    Google Scholar 

  • Michael G G and Neukum G 2010 Planetary surface dating from crater size–frequency distribution measurements: Partial resurfacing events and statistical age uncertainty; Earth Planet. Sci. Lett. 294(3–4) 223–229.

    Article  Google Scholar 

  • Milton D J, Barlow B C, Brett R, Brown A R, Glikson A Y, Manwaring E A, Moss F J, Sedmik E C E, Van Son J and Young G A 1972 Gosses bluff impact structure; Sci. Australia 175 1199–1207.

    Google Scholar 

  • Mittlefehldt D W, McCoy T J, Goodrich C A and Kracher A 1998 Non-chondritic meteorites from asteroidal bodies; In: Mineralogical diversity and geology of Humboldt crater derived using Moon Mineralogy Mapper data (eds) Martinot M, Besse S, Flahaut J, Quantin-Nataf C, Lozac’h L and van Westrenen W; J. Geophys. Res.: Planets 123 612–629.

  • Mustard J F, Pieters C M, Isaacson P J, Head J W, Sebastien B, Clark R N, Klima R L, Petro N E, Staid M I, Sunshine J M, Runyon C J and Tompkins S 2011 Compositional diversity and geologic insights of the Aristarchus crater from moon mineralogy mapper data; J. Geophys. Res. 116 E00G12.

    Article  Google Scholar 

  • Neukum G, Ivanov B and Hartmann W 2001 Cratering records in the inner solar system in relation to the lunar reference system; Space Sci. Rev. 55 96.

    Google Scholar 

  • Odling N E 1997 Fluid flow in fractured rocks at shallow levels in the Earth’s crust: An overview; In: Deformation-enhanced fluid transport in the Earth’s crust and mantle (ed) Holness M B, Chapman and Hall, London, pp. 289–314.

    Google Scholar 

  • Ohman T, Kramer G Y and Kring D A 2014 Characterization of melt and ejecta deposits of Kepler crater from remote sensing data; J. Geophys.: Res. Planets 119 1238–1258.

    Google Scholar 

  • Pieters C M 1986 Composition of the lunar highland crust from near-infrared spectroscopy; Rev. Geophys. 24(3) 557–558.

    Article  Google Scholar 

  • Pieters C M, Boardman J, Buratti B, Chatterjee A, Clark R, Glavich T, Green R, Head J W, Isaacson P, Malaret E, Mccord T, Mustard J, Petro N E, Runyon C, Staid M I, Sunshine J M, Taylor L, Tompkins S, Varanasi P and White M 2009 The Moon Mineralogy Mapper (M3) on Chandrayaan-1; Curr. Sci. 96(4) 1–6.

    Google Scholar 

  • Pike R J 1988 Geomorphology of impact craters on Mercury; In: Mercury; University of Arizona Press, Tucson, pp. 165–273.

    Google Scholar 

  • Plescia J B and Cintala M J 2012 Impact melt in small lunar highland craters; J. Geophys.: Res. Planets 117 E12.

    Article  Google Scholar 

  • Ravine M A and Grieve R A F 1986 An analysis of morphologic variation in simple lunar craters; 17th Proc. Lunar Planet. Sci. Conf., J. Geophys. Res. 91(B13) E75–E83.

  • Robinson M S, Brylow S M, Tschimmel M, Humm D, Lawrence S J, Thomas P C, Denevi B W, Cisneros E B, Zerr J, Ravine M A, Caplinger M A, Ghaemi F T, Schaffner J A, Malin M C, Mahanti P, Bartels A, Anderson J, Tran T N, Eliason E M, McEwen A S, Turtle E, Jolliff B L and Hiesinger H 2010 Lunar Reconnaissance Orbiter Camera (LROC) instrument overview; Space Sci. Rev. 150 81–124.

    Google Scholar 

  • Schultz P H 1976 Floor-fractured lunar craters; The Moon 15(3–4) 241–273.

    Article  Google Scholar 

  • Shukuratov Y G, Kaydash V G and Opanasenko N V 1999 Iron and Titanium abundance and maturity degree distribution on the Lunar nearside; Icarus 137 222–234.

    Article  Google Scholar 

  • Sunshine J M and Pieters C M 1998 Determining the composition of olivine from reflectance spectroscopy; J. Geophys. Res. 103 675–688.

    Article  Google Scholar 

  • Thaker A D, Patel S M and Solanki P M 2020 Morphological analysis and mapping of complex craters of Copernican age: Crookes, Ohm and Stevinus; Planet. Space Science 184 104856.

    Article  Google Scholar 

  • Thesniya P M, Rajesh V J and Flahaut J 2020 Ages and chemistry of mare basaltic units in the Grimaldi basin on the near side of the Moon: Implications for the volcanic history of the basin; Meteor. Planet. Sci. 55 2375–2403.

    Article  Google Scholar 

  • Wagner R, Head J W, Wolf U and Neukum G 2010 Lunar red spots: Stratigraphic sequence and ages of domes and plains in the Hansteen and Helmet regions on the lunar nearside; J. Geophys. Res. 115 E06015.

    Google Scholar 

  • Warren P H 1985 The magma ocean concept and lunar evolution; Ann. Rev. Earth Planet. Sci. 13 201–240.

    Article  Google Scholar 

  • Yue Z, Ouyang Z, Li H, Liu J and Wu G 2007 The origin and geological significance of lunar ridges; Chinese. J. Geochem. 26 418–424.

    Google Scholar 

  • Zhang W and Bowles N E 2013 Mapping lunar TiO2 and FeO with M3 data, European Planetary Science Congress (8).

Download references

Acknowledgements

We wish to acknowledge M3 (Level-2 data) and LROC team for providing high resolution data in the public domain and supplying the data through PDS Geoscience Node. The authors are grateful to the anonymous reviewers for their constructive suggestions, which greatly enhanced this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Arpita N Purohit: Conceptualization, resources, formal analysis, investigation, data curation, writing-original draft, writing-review and editing, visualization. Shreekumari M Patel: Methodology, formal analysis, investigation, validation, writing-review and editing, project administration. Ashka D Thaker: Methodology, investigation, writing-review and editing and Paras M Solanki: Supervision.

Corresponding author

Correspondence to Arpita N Purohit.

Additional information

Communicated by N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purohit, A.N., Patel, S.M., Thaker, A.D. et al. Compositional and morphological analysis of Gassendi crater. J Earth Syst Sci 130, 57 (2021). https://doi.org/10.1007/s12040-021-01567-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01567-5

Keywords

Navigation