Skip to main content

Advertisement

Log in

Impact of data sources to DEM construction and application to runoff and sediment yield modelling using LISEM model

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The use of interpolated digital elevation models (DEM) obtained from free low-resolution satellite images is a typical solution for soil erosion modelling. However, this method may result in loss of surface details, especially in small catchments. Thus, planialtimetric surveys at the study site may improve quality of terrain description, although it requires high costs and time. Therefore, this study aims to evaluate the impact of two DEM sources on the results of a process-based erosion model. The study was developed in the Lajeado Ferreira creek catchment (1.23 km2) in southern Brazil. Two interpolated 5-m resolution DEM maps obtained from: (i) remote sensing source Shuttle Radar Topography Mission (SRTM), and (ii) field topographic survey with Global Navigation Satellite System using Real Time Kinematic (GNSS/RTK); were used as input in the Limburg Soil Erosion Model (LISEM) to simulate runoff and sediment transport. Two other maps required for modelling were developed from each DEM source: the flow direction and drainage network map. Six monitored rainfall events were calibrated for the variables, timing of peak flow (Qtime), peak flow (Qpeak), surface runoff coefficient (C), total surface runoff volume (Qtotal) and sediment yield (SY). Most variables calibrated were within the acceptable statistical ranges. The Qtime and Qpeak simulated for all events were close to the measured values with minor modification of the input parameters while using GNSS/RTK. However, even in maps with better accuracy of relief description (GNSS/RTK), the erosion parameters adjusted for calibration were not within an acceptable physical limit. For example, soil cohesion values had to be multiplied for at least eight times their original value. Hydrograph and sedimentgraph shapes calibration did not reach a satisfactory statistical level, even with the GNSS/RTK database and the incorporation of relevant features of the landscape based on local observation. Although GNSS/RTK database resulted in gains for some variables calibrated with the LISEM model, the advantages were not significant for the conditions of this study.

Highlights

  1. 1.

    Field topographic survey (GNSS/RTK) described important features of the terrain in a small rural catchment in southern Brazil compared to the SRTM (90 and 30 m).

  2. 2.

    The connectivity between unpaved road and drainage channel affects the timing and discharge of peak flow.

  3. 3.

    Field topographic survey provided better calibration results for runoff simulation.

  4. 4.

    Erosion parameters adjusted for calibration was not within an acceptable physical limit even with field topographic survey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

(Source: https://blog.utwente.nl/lisem/basic-theory/).

Figure 6
Figure 7

Similar content being viewed by others

References

  • Alvares C A, Stape J L and Sentelhas P C et al. 2013 Köppen’s climate classification map for Brazil; Meteorol. Zeitschrift. 22 711–728, https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Chaplot V 2014 Impact of spatial input data resolution on hydrological and erosion modelling: Recommendations from a global assessment; Phys. Chem. Earth. Parts A/B/C 67–69 23–35, https://doi.org/10.1016/j.pce.2013.09.020.

    Article  Google Scholar 

  • Claessens L, Heuvelink G B M, Schoorl J M and Veldkamp A 2005 DEM resolution effects on shallow landslide hazard and soil redistribution modelling; Earth Surf. Process. Landf. 30 461–477, https://doi.org/10.1002/esp.1155.

    Article  Google Scholar 

  • Dalbianco L 2013 Simulação hidrossedimentológica com o Modelo LISEM em uma pequena bacia hidrográfica rural; Universidade Federal de Santa Maria, Santa Maria, RS.

  • de Barros C A P 2012 Comportamento hidrossedimentológico de uma bacia hidrográfica rural com técnicas de monitoramento e modelagem, Universidade Federal de Santa Maria, Santa Maria, RS.

    Google Scholar 

  • de Barros C A P 2016 Dinâmica Dos Escoamentos Na Modelagem Da Produção De Sedimentos Em Uma Pequena Bacia Rural; PhD thesis, Federal University, Santa Maria.

  • de Barros C A P, Minella J P G, Dalbianco L and Ramon R 2014 Description of hydrological and erosion processes determined by applying the LISEM model in a rural catchment in southern Brazil; J. Soils Sediments 14 1298–1310, https://doi.org/10.1007/s11368-014-0903-7.

    Article  Google Scholar 

  • de Lima C L R, Reinert D J, Reichert J M and Suzuki L E A S 2010 Produtividade de culturas e resistência à penetração de Argissolo Vermelho sob diferentes manejos; Pesqui Agropecu Bras 45 89–98, https://doi.org/10.1590/S0100-204X2010000100012.

    Article  Google Scholar 

  • de Mello N A 2006 Efeito do sistema de manejo nos atributos do solo, movimentação de sedimentos e exportação de carbono orgânico numa bacia rural sob cultura de fumo. Universidade Federal do Rio Grande do Sul, Porto Alegre, RS.

    Google Scholar 

  • de Morisson Valeriano M and de Fátima Rossetti D 2012 Topodata: Brazilian full coverage refinement of SRTM data; Appl. Geogr. 32 300–309, https://doi.org/10.1016/j.apgeog.2011.05.004.

    Article  Google Scholar 

  • de Oliveira F P 2010 Modelagem do escoamento supercial e da erosão hídrica em bacia rural em Arvorezinha, RS, utilizando o WEPP, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS.

    Google Scholar 

  • De Roo A P J, Wesseling C G and Ritsema C J 1996 LISEM: A. I: Theory; Hydrol. Process. 10 1107–1117, https://doi.org/10.1002/(SICI)1099-1085(199608)10:8%3c1107::AID-HYP415%3e3.0.CO;2-4.

    Article  Google Scholar 

  • Djodjic F and Villa A 2015 Distributed, high-resolution modelling of critical source areas for erosion and phosphorus losses; Ambio 44 241–251, https://doi.org/10.1007/s13280-014-0618-4.

    Article  Google Scholar 

  • Drap J 1996 The LISEM project: An introduction; Hydrol. Process. 10 1021–1025.

    Article  Google Scholar 

  • Engman E T 1986 Roughness coefficients for routing surface runoff; J. Irrig. Drain Eng. 112 39–53, https://doi.org/10.1061/(ASCE)0733-9437(1986)112:1(39).

    Article  Google Scholar 

  • Fernández T, Pérez-García J L, Gómez-López J M et al. 2020 Multi-temporal analysis of gully erosion in olive groves by means of digital elevation models obtained with aerial photogrammetric and LiDAR data; ISPRS. Int. J. Geo-Inf. 9, https://doi.org/10.3390/ijgi9040260.

  • Fiorin T T, Carlesso R and Petry M T et al. 2002 Relações hidricas e índice de área foliar do milho cultivado em duas épocas de semeadura; In: XVI Reunião Brasileira de Manejo e Conservação do solo e da água, Sociedade Brasileira de Ciência do Solo, Cuiabá, MT.

  • Geza M and McCray J E 2008 Effects of soil data resolution on SWAT model stream flow and water quality predictions; J. Environ. Manag. 88 393–406, https://doi.org/10.1016/j.jenvman.2007.03.016.

    Article  Google Scholar 

  • Grum B, Woldearegay K and Hessel R et al. 2017 Assessing the effect of water harvesting techniques on event-based hydrological responses and sediment yield at a catchment scale in northern Ethiopia using the Limburg Soil Erosion Model (LISEM); Catena 159 20–34, https://doi.org/10.1016/j.catena.2017.07.018.

    Article  Google Scholar 

  • Heiffig L S, Câmara G M D S and Marques L A et al. 2006 Fechamento E Índice De Área Foliar Da Cultura Da Soja; Bragantia, Campinas 65 285–295, https://doi.org/10.1590/S0006-87052006000200010.

    Article  Google Scholar 

  • Hessel R 2005 Effects of grid cell size and time step length on simulation results of the Limburg soil erosion model (LISEM); Hydrol. Process. 19 3037–3049, https://doi.org/10.1002/hyp.5815.

    Article  Google Scholar 

  • Hessel R and Van Asch T 2003 Modelling gully erosion for a small catchment on the Chinese Loess Plateau; Catena 54 131–146, https://doi.org/10.1016/S0341-8162(03)00061-4.

    Article  Google Scholar 

  • IUSS Working Group WRB 2015 World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps; World Soil. Resources Reports No. 106 FAO, Rome.

  • Jetten V 2002 Lisem user manual, version 2.x. The Netherlands.

  • Karssenberg D, Schmitz O and Salamon P et al. 2010 A software framework for construction of process-based stochastic spatio-temporal models and data assimilation; Environ. Model. Softw. 25 489–502, https://doi.org/10.1016/j.envsoft.2009.10.004.

    Article  Google Scholar 

  • Kaufmann V, Pinheiro A and dos Castro N M R et al. 2014 Ruissellement sur des sols soumis à différents modes de gestion et régimes de pluie simulée dans le Brésil méridional; Hydrol. Sci. J. 59 2173–2185, https://doi.org/10.1080/02626667.2014.945454.

    Article  Google Scholar 

  • Kovalchuk I P, Lukianchuk K A and Bogdanets V A 2019 Assessment of open source digital elevation models (SRTM-30, ASTER, ALOS) for erosion processes modelling; J. Geol. Geogr. Geoecol. 28 95–105, https://doi.org/10.15421/111911.

  • Kumar B, Lakshmi V and Patra K C 2017a Evaluating the uncertainties in the SWAT model outputs due to DEM grid size and resampling techniques in a large Himalayan river basin; J. Hydrol. Eng. 22 1–12, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001569.

    Article  Google Scholar 

  • Kumar B, Patra K C and Lakshmi V 2017b Error in digital network and basin area delineation using d8 method: A case study in a sub-basin of the Ganga; J. Geol. Soc. India 89 65–70, https://doi.org/10.1007/s12594-017-0559-1.

    Article  Google Scholar 

  • Kværnø S H and Stolte J 2012 Effects of soil physical data sources on discharge and soil loss simulated by the LISEM model; Catena 97 137–149, https://doi.org/10.1016/j.catena.2012.05.001.

    Article  Google Scholar 

  • Lidberg W, Nilsson M, Lundmark T and Ågren A M 2017 Evaluating preprocessing methods of digital elevation models for hydrological modelling; Hydrol. Process. 31 4660–4668, https://doi.org/10.1002/hyp.11385.

    Article  Google Scholar 

  • Liu Z, Ma D, Hu W and Li X 2018 Land use dependent variation of soil water infiltration characteristics and their scale-specific controls; Soil. Tillage Res. 178 139–149, https://doi.org/10.1016/j.still.2018.01.001.

    Article  Google Scholar 

  • Lourenção A, Honda E A and Lima W P 2006 Determinação do índice de rugosidade de Manning em solos sob diferentes usos através do método da microparcela móvel; In: Anais Do Simpósio Internacional De Iniciação Científica Da USP, Piracicaba.

  • Martins J D 2013 Modelagem técnica e econômica da irrigação deficitária para diferentes métodos de aplicação de água na cultura do milho, Universidade Federal de Santa Maria, Santa Maria, RS.

    Google Scholar 

  • Merritt W S, Letcher R A and Jakeman A J 2003 A review of erosion and sediment transport models; Environ. Model. Softw. 18 761–799, https://doi.org/10.1016/S1364-8152(03)00078-1.

    Article  Google Scholar 

  • Minella J P G, Merten G H and Barros C A P et al. 2018 Long-term sediment yield from a small catchment in southern Brazil affected by land use and soil management changes; Hydrol. Process. 32 200–211, https://doi.org/10.1002/hyp.11404.

    Article  Google Scholar 

  • Minella J P G 2007 Utilização de técnicas hidrossedimentosmétricas combinadas com a identificação de fontes de sedimentos para avaliar o efeito do uso e manejo do solo nos recursos hídricos de uma bacia hidrográfica rural no Rio Grande do Sul; Universidade Federal do Rio Grande do Sul, Porto Alegre, RS.

  • Mondal A, Khare D and Kundu S et al. 2017 Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs; Geosci. Frontiers 8 425–436, https://doi.org/10.1016/j.gsf.2016.03.004.

    Article  Google Scholar 

  • Moriasi D N, Arnold J G and Van Liew M W et al. 2007 Model evaluation guidelines for systematic quantification of accuracy in watershed simulations; Trans. ASABE 50 885–900, https://doi.org/10.13031/2013.23153.

  • Morgan R P C, Quinton J N and Smith R E et al. 1998 The European Soil Erosion Model (EUROSEM): Documentation and user guide, http://spider.silsoe.cranfield.ac.uk/eurosem/eurosem.htm.

  • Moro M 2011 Avaliação do modelo LISEM na simulação dos processos hidrossedimentológicos de uma pequena bacia rural localizada nas encostas basálticas do Rio Grande do Sul. Universidade Federal do Rio Grande do Sul; Porto Alegre, RS.

  • Nash J E and Sutcliffe J V 1970 River flow forecasting through conceptual models. Part I: A discussion of principles; J. Hydrol. 10 282–290, https://doi.org/10.1016/0022-1694(70)90255-6.

    Article  Google Scholar 

  • Pellegrini A 2006 Sistemas de cultivo da cultura do fumo com ênfase às práticas de manejo e conservação do solo, Universidade Federal de Santa Maria.

  • Rahimy P 2012 Effects of soil depth spatial variation on runoff simulation, using the Limburg Soil Erosion Model (LISEM): A case study in Faucon Catchment, France; Soil Water Res. 7 52–63.

    Article  Google Scholar 

  • Ramon R 2017 Kinetic energy measurement of rainfall and defining a pluvial index to estimate erosivity in Arvorezinha/RS; Federal. University, Santa Maria.

  • Renschler C S, Flanagan D C and Engel B A et al. 2002 Site-specific decision-making based on RTK GPS survey and six alternative elevation data sources: Watershed topography and delineation; Trans. ASAE 45(6) 1883.

  • Risse L M, Nearing M A and Savabi M R 1994 Determining the green-ampt effective hydraulic conductivity from rainfall-runoff data for the WEPP Model; Trans. ASAE 37 411–418, https://doi.org/10.13031/2013.28092.

  • Ritchie S, Hanway J and Thompson H 1985 How a soybean plant develops; Iowa State Univ. Sci. Technol. Coop. Ext. Serv. 20.

  • Robinet J, Minella J P G and de Barros C A P et al. 2018 Impacts of forest conversion and agriculture practices on water pathways in Southern Brazi; Hydrol. Process. 32 2304–2317, https://doi.org/10.1002/hyp.13155.

    Article  Google Scholar 

  • Rodríguez-Caballero E, Cantón Y and Jetten V 2015 Biological soil crust effects must be included to accurately model infiltration and erosion in drylands: An example from Tabernas Badlands; Geomorphology 241 331–342, https://doi.org/10.1016/j.geomorph.2015.03.042.

    Article  Google Scholar 

  • Romanowicz A A, Vanclooster M, Rounsevell M and La Junesse I 2005 Sensitivity of the SWAT model to the soil and land use data parametrisation: A case study in the Thyle catchment, Belgium; Ecol. Modell. 187 27–39, https://doi.org/10.1016/j.ecolmodel.2005.01.025.

    Article  Google Scholar 

  • Sanchez-Moreno J F, Jetten V, Mannaerts C M and de Pina Tavares J 2014 Selecting best mapping strategies for storm runoff modelling in a mountainous semi-arid area; Earth Surf. Process. Landf. 39 1030–1048, https://doi.org/10.1002/esp.3501.

    Article  Google Scholar 

  • Shen Z Y, Chen L and Liao Q et al. 2013 A comprehensive study of the effect of GIS data on hydrology and non-point source pollution modelling; Agr. Water Manag., https://doi.org/10.1016/j.agwat.2012.12.005.

  • Shreve E A and Downs A C 2005 Quality-assurance plan for the analysis of fluvial sediment by the U.S. geological survey kentucky Water Science Center Sediment Laboratory; Geol. Surv. Open-File Rep-1230 35.

  • Starkloff T, Stolte J and Hessel R et al. 2018 Integrated, spatial distributed modelling of surface runoff and soil erosion during winter and spring; Catena 166 147–157, https://doi.org/10.1016/j.catena.2018.04.001.

    Article  Google Scholar 

  • Tan M L, Ficklin D L and Dixon B et al. 2015 Impacts of D E M resolution, source, and resampling technique on SWAT-simulated streamflow; Appl. Geogr., https://doi.org/10.1016/j.apgeog.2015.07.014.

  • University of Twente 2018 OpenLISEM: Multi-hazard land surface process model.

  • Wechsler S P 2007 Uncertainties associated with digital elevation models for hydrologic applications: A review; Hydrol. Earth Syst. Sci. 11 1481–1500, https://doi.org/10.5194/hess-11-1481-2007.

    Article  Google Scholar 

  • Zhang P, Liu R and Bao Y et al. 2014 Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed; Water. Res. 53 132–144, https://doi.org/10.1016/j.watres.2014.01.018.

    Article  Google Scholar 

  • Zuluaga J J P 2014 Hidrologia comparativa em bacias hidrográficas com eucalipto e campo, Universidade Federal de Santa Maria, Santa Maria, RS.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank – CNPq, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES, Financiadora de Estudos e Projetos – FINEP, government of Rio Grande do Sul State and Sindicato Interestadual da Indústria do Tabaco – SindiTabaco for financial support. Likewise, they thank the Federal University of Pampa-UNIPAMPA São Gabriel campus for lending the GNSS/RTK equipment.

Author information

Authors and Affiliations

Authors

Contributions

Cláudia Alessandra Peixoto de Barros: Conceptualization, methodology, investigation, original draft preparation, reviewing and editing. Jean Paolo Gomes Minella: Conceptualization, resources, reviewing and editing, project administration. Alexandre Augusto Schlesner: Conceptualization, methodology, original draft preparation, reviewing and editing. Rafael Ramon: Methodology, original draft preparation, reviewing and editing. André Carlos Copetti: Investigation, resources, reviewing and editing.

Corresponding author

Correspondence to C A P de Barros.

Additional information

Communicated by Aparna Shukla

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Barros, C.A.P., Minella, J.P.G., Schlesner, A.A. et al. Impact of data sources to DEM construction and application to runoff and sediment yield modelling using LISEM model. J Earth Syst Sci 130, 53 (2021). https://doi.org/10.1007/s12040-020-01547-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01547-1

Keywords

Navigation