Skip to main content
Log in

Understanding genesis of iron oxide concretions present in Dhandraul (Vindhyan) Sandstone: Implications in formation of Martian hematite spherules

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The iron oxide concretions of Shankargarh (Allahabad), India belongs to Dhandraul Sandstone of Vindhyan Supergroup. Petrography of concretions shows abundant quartz grains embedded within the iron oxide cementation. XRD analysis of the concretion shows diagnostic peaks for quartz, hematite, and goethite. The A–CN–K and A–CNK–FM ternary diagrams drawn for concretion and host rock bulk composition clearly indicate the interaction of concretions rock with iron-bearing diagenetic fluids. A negative Ce anomaly, lower Th/U ratio, and enrichment of redox responsive trace element (e.g., vanadium) indicate concretion formation is redox-controlled. The concretions show Fe enrichment and Si depletion as compared to the host sandstone. The mass balance calculations indicate that the total Fe2O3 in the ferruginous sandstone system is 17.63 wt%. The iron mobilization and recycling in the sandstone pore spaces have formed concretions with Fe2O3 (25–35% by volume). The sandstone volume required to produce a 6 mm diameter iron oxide concretion is 1807.83 mm3. The Fe laminae and random red colouration patterns in Dhandraul sandstone are consistent with the movement of iron-enriched fluid through pores and spaces. These iron oxide concretions have similarities with the hematite spherules discovered in the Burn Formation, Meridiani Planum, Mars.

Highlights

  • Random red colouration pattern, iron laminae, the role of advective and diffusive processes during the formation of the iron oxide concretions present in Dhandraul sandstone are discussed in detail.

  • Mineralogical and textural study of the Shankargarh iron oxide concretions using petrography and XRD.

  • Fe bearing paleofluid circulation, redox processes, and elemental mobility (enrichment and depletion of elements) are discussed in detail using whole-rock geochemistry of Shankargarh iron oxide concretions and associated sandstone.

  • The similarities and difference between Shankargarh iron oxide concretions and Martian hematite spherules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Abdel-Wahab A and McBride E F 2001 Origin of giant calcite-cemented concretions, temple member, Qasr El Sagha formation (Eocene), Faiyum depression, Egypt; J. Sedim. Res. 71(1) 70–81.

    Article  Google Scholar 

  • Andrews-Hanna J C, Phillips R J and Zuber M T 2007 Meridiani Planum and the global hydrology of Mars; Nature 446(7132) 163–166.

    Article  Google Scholar 

  • Auden J B 1933 Vindhyan sedimentation in the Son Valley, Mirzapur district; Memoir Geol. Soc. India 62 141–250.

    Google Scholar 

  • Beitler B, Chan M A and Parry W T 2003 Bleaching of Jurassic Navajo Sandstone on Colorado Plateau Laramide highs: Evidence of exhumed hydrocarbon supergiants; Geology 31(12) 1041–1044.

    Article  Google Scholar 

  • Beitler B, Parry W T and Chan M A 2005 Fingerprints of fluid flow: Chemical diagenetic history of the Jurassic Navajo Sandstone, southern Utah, USA; J. Sedim. Res. 75(4) 547–561.

    Article  Google Scholar 

  • Berner R A 1969 Goethite stability and the origin of red beds; Geochim. Cosmochim. Acta 33(2) 267–273.

    Article  Google Scholar 

  • Bowen B B, Benison K C, Oboh-Ikuenobe F E, Story S and Mormile M R 2008 Active hematite concretion formation in modern acid saline lake sediments, Lake Brown, Western Australia; Earth Planet. Sci. Lett. 268(1–2) 52–63.

    Article  Google Scholar 

  • Calvin W M, Shoffner J D, Johnson J R, Knoll A H, Pocock J M, Squyres S W, Weitz C M, Arvidson R E, Bell III J F, Christensen P R, de Souza Jr, P A, Farrand W H, Glotch T D, Herkenhoff K E, Jolliff B L, Knudson A T, McLennan S M, Rogers A D and Thompson S D 2008 Hematite spherules at Meridiani: Results from MI, Mini–TES, and Pancam; J. Geophys. Res.: Planets 113(E12).

  • Chakraborty C 1996 Sedimentary records of erg development over a braidplain: Proterozoic Dhandraul Sandstone, Vindhyan Supergroup, Son valley; Memoirs Geol. Soc. India 36 77–100.

    Google Scholar 

  • Chan M A, Parry W T and Bowman J R 2000 Diagenetic hematite and manganese oxides and fault–related fluid flow in Jurassic sandstones, southeastern Utah; AAPG Bull. 84(9) 1281–1310.

    Google Scholar 

  • Chan M A and Parry W T 2002 Rainbow of rocks: Mysteries of sandstone colors and concretions in Colorado Plateau canyon country; Vol. 77, Utah Geological Survey.

  • Chan M A, Beitler B, Parry W T, Ormö J and Komatsu G 2004 A possible terrestrial analogue for haematite concretions on Mars; Nature 429(6993) 731.

    Article  Google Scholar 

  • Chan M, Bowen B, Parry W, Ormö J and Komatsu G 2005 Red rock and red planet diagenesis; In: Comparisons of Earth and Mars Concretions, GSA today 15 4–10.

    Article  Google Scholar 

  • Chan M A, Johnson C M, Beard B L, Bowman J R and Parry W T 2006 Iron isotopes constrain the pathways and formation mechanisms of terrestrial oxide concretions: A tool for tracing iron cycling on Mars; Geosphere 2(7) 324–332.

    Article  Google Scholar 

  • Chan M A, Ormö J, Park A J, Stich M, Souza-Egipsy V and Komatsu G 2007 Models of iron oxide concretion formation: Field, numerical and laboratory comparisons; Geofluids 7(3) 356–368.

    Article  Google Scholar 

  • Chan M A, Potter S L, Bowen B B, Parry W T, Barge L M, Seiler W, Petersen E U, Bowman J R, Grotzinger J and Milliken R 2012 Characteristics of terrestrial ferric oxide concretions and implications for Mars; In: Sedimentary Geology of Mars (eds) Grotzinger J and Milliken R, Soc. Sedim. Geol. Spec. Publ. 102 253–270.

  • Christensen P R, Wyatt M B, Glotch T D, Rogers A D, Anwar S, Arvidson R E, Bandfield J L, Blaney D L, Budney C, Calvin W M, Fallacaro A, Fergason R L, Gorelick N, Graff T G, Hamilton V E, Hayes A G, Johnson J R, Knudson A T, McSween Jr H Y, Mehall G L, Mehall L K, Moersch J E, Morris R V, Smith M D, Clark B C, Morris R V, McLennan S M, Gellert R, Jolliff B, Knoll A H, Squyres S W, Lowenstein T K, Ming D W, Tosca N J, Yen A, Christensen P R, Gorevan S, Bruckner J, Calvin W, Dreibus G, Farrand W, Klingelhoefer G, Waenke H, Zipfel J, Bell III J F, Grotzinger J, McSween H Y and Rieder R 2005 Chemistry and mineralogy of outcrops at Meridiani Planum; Earth Planet. Sci. Lett. 240 73–94.

  • Coleman M L 1993 Microbial processes: Controls on the shape and composition of carbonate concretions; Mar. Geol. 113(1–2) 127–140.

    Article  Google Scholar 

  • Cornell R M and Schwertmann U 2003 The iron oxides: structure, properties, reactions, occurrences and uses; John Wiley & Sons.

  • Ehrlich H L 1996 Geomicrobiology (3d edn); New York, Dekker, 719p.

    Google Scholar 

  • Folk R L 1974 The natural history of crystalline calcium carbonate: Effect of magnesium content and salinity; J. Sedim. Res. 44(1) 40–53.

    Google Scholar 

  • Frydenvang J et al. 2017 Diagenetic silica enrichment and late-stage groundwater activity in Gale Crater, Mars; Geophys. Res. Lett. 44 4716–4724.

    Article  Google Scholar 

  • Garden I R, Guscott S C, Foxford K A, Burley S, Walsh J J and Watterson J 1997 An exhumed fill and spill hydrocarbon fairway in the Entrada sandstone of the Moab anticline, Utah; In: Migration and interaction in sedimentary basins and orogenic belts, Geofluids 2 287–290.

  • Garden R, Foxford K A, Guscott S, Burley S, Walsh J and Watterson J 1998 The spatial distribution of fault–related diagenesis around the Moab fault in Utah; Am. Assoc. Petrol. Geol. Annual Convention, https://doi.org/10.1306/00aa874c-1730-11d7-8645000102c1865d.

  • Geological Survey of India 2012 Geology and mineral resources of the states of India; Miscellaneous Publication No. 30 Part-XIII: Uttar Pradesh and Uttarakhand (2nd rev. edn) 75p.

  • Glotch T D, Morris R V, Christensen P R and Sharp T G 2004 Effect of precursor mineralogy on the thermal infrared emission spectra of hematite: Application to Martian hematite mineralization; J. Geophys. Res. 109.

  • Grotzinger J P, Arvidson R E, Bell III J F, Calvin W, Clark B C, Fike D A, Golombek M, Greeley R, Haldemann A, Herkenhoff K E, Jolliff B L, Knoll A H, Malin M, McLennan S M, Parker T, Soderblom L, Sohl-Dickstein J N, Squyres S W, Tosca N J and Watters W A 2005 Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns Formation, Meridiani Planum, Mars; Earth Planet. Sci. Lett. 240 11–72.

    Google Scholar 

  • Grotzinger J P, Beaty D, Dromart G, Gupta S, Harris M, Hurowitz J, Kocurek G, McLennan S, Milliken R, Ori G G and Sumner D 2011 Mars sedimentary geology: Key concepts and outstanding questions; Astrobiology 11 77–87.

    Article  Google Scholar 

  • Grotzinger J P and Milliken R E 2012 The sedimentary rock record of Mars: Distribution, origins, and global stratigraphy; In: Sedimentary Geology of Mars, SEPM Spec. Publ. (Society for Sedimentary Geology), Tulsa, OK, 102 1–48.

  • Hansley P L 1995 Diagenetic and burial history of the Lower Permian White Rim Sandstone in the tar sand triangle, Paradox basin, southeastern Utah; US Geol. Surv. Bull. 2000(I) 41p.

  • Hylander L D, Meili M, Oliveira L J, e Silva E D C, Guimarães J R, Araujo D M, Neves R P, Stachiw R, Barros A J and Silva G D 2000 Relationship of mercury with aluminum, iron and manganese oxy–hydroxides in sediments from the Alto Pantanal, Brazil; Sci. Total Environ. 260(1–3) 97–107.

  • Jacka A D 1974 Differential cementation of a Pleistocene carbonate fanglomerate, Guadalupe Mountains; J. Sedim. Res. 44(1) 85–92.

    Google Scholar 

  • Jolliff B L 2005 Composition of Meridiani hematite–rich spherules: A mass-balance mixing-model approach; In: 36th Annual Lunar and Planetary Science Conference (Vol. 36).

  • Kah L C and MSL Science Team 2015 Images from curiosity: A new look at Mars; Elements 11(1) 27–32.

    Article  Google Scholar 

  • Klein C and Bricker O P 1977 Some aspects of the sedimentary and diagenetic environment of Proterozoic banded iron-formation; Econ. Geol. 72 1457–1470.

    Article  Google Scholar 

  • Klingelhöfer G, Morris R V, Bernhardt B, Schröder C, Rodionov D S, De Souza Jr P A, Yen A, Gellert R, Evlanov E N, Zubkov B, Foh J, Bonnes U, Kankeleit E, Gütlich P, Ming D W, Renz F, Wdowiak T, Squyres S W and Arvidson R E 2004 Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer; Science 306(5702) 1740–1745.

  • Kukkadapu R K, Zachara J M, Fredrickson J K, Smith S C, Dohnalkova A C and Russell C K 2003 Transformation of 2-line ferrihydrite to 6-line ferrihydrite under oxic and anoxic conditions; Am. Mineral. 88(11–12) 1903–1914.

    Article  Google Scholar 

  • Lafuente B, Downs R T, Yang H and Stone N 2016 The power of databases: The RRUFF project; In: Highlights in Mineralogical Crystallography, Walter de Gruyter GmbH, pp. 1–29.

  • Langmuir D 1997 Aqueous environmental geochemistry; New Jersey, Prentice Hall, 600p.

    Google Scholar 

  • Li J, Chan L and Li Y 2016 The blueberry (iron nodule) from the Shark Bay area, Western Australia and its implication to the genetic environments of iron nodules on Mars; Sci. China Earth Sci. 59(3) 640–650.

  • Longman M W 1980 Carbonate diagenetic textures from near surface diagenetic environments; AAPG Bull. 64(4) 461–487.

    Google Scholar 

  • McBride E F, Picard M D and Folk R L 1994 Oriented concretions, Ionian Coast, Italy; Evidence of groundwater flow direction; J. Sedim. Res. 64(3a) 535–540.

    Google Scholar 

  • McBride E F, Picard M D and Milliken K L 2003 Calcite–cemented concretions in Cretaceous sandstone, Wyoming and Utah, USA; J. Sedim. Res. 73(3) 462–483.

    Article  Google Scholar 

  • McLennan S M, Bell III J F, Calvin W M, Christensen P R, Clark B C, de Souza P A, Farmer J, Farrand W H, Fike D A, Gellert R, Ghosh A, Glotch T D, Grotzinger J P, Hahn B, Herkenhoff K E, Hurowitz J A, Johnson J R, Johnson S S, Jolliff B, Klingelhöfer G, Knoll A H, Learner Z, Malin M C, McSween Jr H Y, Pocock J, Ruff S W, Soderblom L A, Squyres S W, Tosca N J, Watters W A, Wyatt M B and Yen A 2005 Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars; Earth Planet. Sci. Lett. 240 95–121.

    Google Scholar 

  • Morris R V, Ming D W, Graff T G, Arvidson R E, Bell Iii J F, Squyres S W and Robinson G A 2005 Hematite spherules in basaltic tephra altered under aqueous, acid–sulfate conditions on Mauna Kea volcano, Hawaii: Possible clues for the occurrence of hematite-rich spherules in the Burns formation at Meridiani Planum, Mars; Earth Planet. Sci. Lett. 240(1) 168–178.

    Article  Google Scholar 

  • Morris R V, Klingelhoefer G, Schroeder C, Rodionov D S, Yen A, Ming D W, de Souza Jr P A, Wdowiak T, Fleischer I, Gellert R, Bernhardt B, Bonnes U, Cohen B A, Evlanov E N, Foh J, Guetlich P, Kankeleit E, McCoy T J, Mittlefehldt D W, Renz F, Schmidt M E, Zubkov B, Squyres S W and Arvidson R E 2006 Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits; J. Geophys. Res. 111.

  • Mozley P S 1989 Complex compositional zonation in concretionary siderite: Implications for geochemical studies; J. Sedim. Res. 59(5).

  • Mozley P S 2003 Diagenetic structures; In: Encyclopedia of sediments and sedimentary rocks (ed.) Middleton G, Kluwer Academic Press, Dordrecht, pp. 219–225.

    Google Scholar 

  • Mozley P S and Davis J M 2005 Internal structure and mode of growth of elongate calcite concretions: Evidence for small-scale, microbially induced, chemical heterogeneity in groundwater; Geol. Soc. Am. Bull. 117(11–12) 1400–1412.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1982 Early Proterozoic climates and plate motions inferred from major element chemistry of lutites; Nature 299(5885) 715.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1984 Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations; Geochim. Cosmochim. Acta 48(7) 1523–1534.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1989 Formation and diagenesis of weathering profiles; J. Geol. 97(2) 129–147.

    Article  Google Scholar 

  • Ortoleva P, Merino E, Moore C and Chadam J 1987 Geochemical self-organization. I: Reaction–transport feedbacks and modeling approach; Am. J. Sci. 287(10) 979–1007.

  • Ortoleva P J 1994 Geochemical self-organization; Oxford University Press: Clarendon Press, 411p.

  • Parry W T, Chan M A and Beitler B 2004 Chemical bleaching indicates episodes of fluid flow in deformation bands in sandstone; AAPG Bull. 88 175–191.

  • Pati J K, Pruseth K L, Chatterjee R S, Patel S C, Prakash K, Chakarvorty M, Singh R P, Bhushan R, Malviya V P, Sharma R and Ray P K C 2016 Hematite–rich concretions from Mesoproterozoic Vindhyan sandstone in northern India: A terrestrial Martian ‘blueberries’ analogue with a difference; Curr. Sci. 111(3) 535.

    Article  Google Scholar 

  • Potter S L 2009 Characterization of Navajo Sandstone Hydrous Ferric Oxide Concretions; Dissertation, Department of Geology and Geophysics, University of Utah.

  • Potter S L, Chan M A, Petersen E U, Dyar M D and Sklute E 2011 Characterization of Navajo Sandstone concretions: Mars comparison and criteria for distinguishing diagenetic origins; Earth Planet. Sci. Lett. 301(3–4) 444–456.

    Article  Google Scholar 

  • Potter P E 1978 Petrology and chemistry of modern big river sands; J. Geol. 86(4) 423–449.

    Article  Google Scholar 

  • Roduit N 2008 JMicroVision: Image analysis toolbox for measuring and quantifying components of high-definition images; Ver. 1(7) 2002–2007.

    Google Scholar 

  • Schneider A L, Mittlefehldt D W, Gellert R and Jolliff B 2007 Compositional constraints on hematite-rich spherule (Blueberry) formation at Meridiani Planum, Mars.

  • Seilacher A 2001 Concretion morphologies reflecting diagenetic and epigenetic pathways; Sedim. Geol. 143(1–2) 41–57.

    Article  Google Scholar 

  • Squyres S W, Grotzinger J P, Arvidson R E, Bell J F III, Calvin W, Christensen P R, Clark B C, Crisp J A, Farrand W H, Herkenhoff K E, Johnson J R, Klingelhofer G, Knoll A H, McLennan S M, McSween H Y Jr, Morris R V, Rice J W Jr, Rieder R and Soderblom L A 2004 In-situ evidence for an ancient aqueous environment on Mars; Science 306 1709–1714.

    Article  Google Scholar 

  • Squyres S W and Knoll A H 2005 Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars; Earth Planet. Sci. Lett. 240(1) 1–10.

    Article  Google Scholar 

  • Steefel C I and Van Cappellen P 1990 A new kinetic approach to modelling water–rock interaction: The role of nucleation, precursors, and Ostwald ripening; Geochim. Cosmochim. Acta 54(10) 2657–2677.

    Article  Google Scholar 

  • Steefel C I 2008 Geochemical kinetics and transport; In: Kinetics of water-rock interaction, Springer, New York, NY, pp. 545–589.

    Chapter  Google Scholar 

  • Stern K H 1954 The Liesegang phenomenon; Chem. Rev. 54(1) 79–99.

    Article  Google Scholar 

  • Stow D A V 2009 Sedimentary rocks in the field: A color guide; Third Impression, Academic Press.

  • Taylor S R and McLennan S M 1985 The continental crust: Its composition and evolution; Blackwell Scientific Publications, United States, 328p.

    Google Scholar 

  • Von Gunten U and Schneider W 1991 Primary products of the oxygenation of iron (II) at an oxic–anoxic boundary: Nucleation, aggregation, and aging; J. Colloid Interface Sci. 145(1) 127–139.

    Article  Google Scholar 

  • Wilde P, Quinby-Hunt M S and Erdtmann B D 1996 The whole-rock cerium anomaly: A potential indicator of eustatic sea-level changes in shales of the anoxic facies; Sedim. Geol. 101(1–2) 43–53.

    Article  Google Scholar 

  • Wilkinson M 1993 Geometrical arrangement of calcite cementation within shallow; Earth-Sci. Rev. 34 47–54.

    Article  Google Scholar 

  • Wilson J H, McLennan S M, Glotch T D, Rasbury E T, Gierlowski-Kordesch E H and Tappero R V 2012 Pedogenic hematitic concretions from the Triassic New Haven Arkose, Connecticut: Implications for understanding Martian diagenetic processes; Chem. Geol. 312 195–208.

    Article  Google Scholar 

  • Zervas D, Nichols G J, Hall R, Smyth H R, Lüthje C and Murtagh F 2009 SedLog: A shareware program for drawing graphic logs and log data manipulation; Comput. Geosci. 35(10) 2151–2159.

Download references

Acknowledgements

Mr Prakash Jha acknowledges IIT (ISM) Dhanbad for the Institute fellowship. The authors acknowledge the XRF analysis facility at NGRI Hyderabad (India), ICPMS analysis facility at IIT Kanpur (India), and XRD analysis facility at SRM University, Chennai, India.

Author information

Authors and Affiliations

Authors

Contributions

Mr Prakash Jha has done the fieldwork, petrography, and analyzed the photographs and data generated from it. He has also analyzed the geochemical data generated from various scientific labs and organizations. Mr Prakash Jha, Dr Pranab Das and Dr Dwijesh Ray have cooperatively written this research paper.

Corresponding author

Correspondence to Prakash Jha.

Additional information

Communicated by Saibal Gupta

Corresponding editor: Saibal Gupta

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, P., Das, P. & Ray, D. Understanding genesis of iron oxide concretions present in Dhandraul (Vindhyan) Sandstone: Implications in formation of Martian hematite spherules. J Earth Syst Sci 130, 49 (2021). https://doi.org/10.1007/s12040-020-01542-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01542-6

Keywords

Navigation