Skip to main content
Log in

Impact of rainfall intensity, monsoon and MJO to rainfall merging in the Indonesian maritime continent

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Merging is an estimation technique used to improve the accuracy of rainfall predictions by combining two rainfall predictions. In fact, the performance of remote sensing estimates varies in each place and time where the influence of the time has a relationship with the global weather phenomenon. The aim of this study is to investigate the influence of the two most influential phenomena on rainfall in the Indonesian maritime continent: the monsoon and Madden–Julian Oscillation. This assessment also analyzed the impact of rainfall intensity. While the change in correlation, root-mean-square-error (RMSE) and mean-absolute-error (MAE) will be used to assess the effectiveness of merging of monsoons and MJO. The result shows that the intensity of rainfall apparently affect the accuracy of merging, where the moderate-intensity has low RMSE and MAE and high correlation compared to heavy or very heavy rainfall. While comparing other phases and season found, the 5th phase of MJO and rainy seasons have the best performance. Moreover, among modification methods, the modification of conditional merging (CM) is the best merging technique for all seasons and MJO’s phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  • Ahrens B 2006 Distance in spatial interpolation of daily rain gauge data; Hydrol. Earth Syst. Sci. 10 197–208.

    Google Scholar 

  • Babish G 2000 Geostatistics without tears: A pratical guide to geostatistics, Variograms and Kriging; Environment Canada.

    Google Scholar 

  • Bates J M and Granger C W J 1969 The combination of forecast; Oper. Res. Quart. 20 451–467.

    Google Scholar 

  • Battan L J 1973 Radar observation of the atmosphere; The University of Chicago Press, Chicago.

    Google Scholar 

  • Bayong T H K 2004 Klimatologi; ITB Press, Bandung.

    Google Scholar 

  • Borga M 2002 Accuracy of radar rainfall estimates for streamflow simulation; J. Hydrol. 267 26–39.

    Google Scholar 

  • Brandes E A, Vivekanandan J and Wilson J W 1999 A comparison of radar reflectivity estimates of rainfall from collocated radars; J. Atmos. Ocean. Tech. 16 1264–1272.

    Google Scholar 

  • Chen S S and Houze R A 1997 Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool; Quart. J. Roy. Meteor. Soc. 123 357–388.

    Google Scholar 

  • Chen T, Ren L, Yuan F, Yang X, Jiang S, Tang T, Liu Y, Zhao C and Zhang L 2017 Comparison of spatial interpolation schemes for rainfall data and application in hydrological modeling; Water 9 342–357.

    Google Scholar 

  • Courty L G, Ramirez M A R and Acuña A P 2018 The Significance of the spatial variability of rainfall on the numerical simulation of urban floods; Water 10(207) 1–17.

    Google Scholar 

  • D’Arrigo R and Wilson R 2008 Short communication: El Niño and Indian Ocean influences on Indonesian drought: Implications for forecasting rainfall and crop productivity; Int. J. Climatol. 28 611–616.

    Google Scholar 

  • Das M, Hazra A, Sarkar A, Bhattacharya S and Banik P 2017 Comparison of spatial interpolation methods for estimation of weekly rainfall in West Bengal, India; Mausam 68(1) 41–50.

    Google Scholar 

  • Ding Y H 1992 Summer monsoon rainfalls in China; J. Meteorol. Soc. Japan 70 373–396.

    Google Scholar 

  • Eischeid J K, Pasteris P A, Diaz H F, Plantico M S and Lott N J 2000 Creating a serially complete, national daily time series of temperature and precipitation for the western United States; J. Appl. Meteorol. Climatol. 39 1580–1591.

    Google Scholar 

  • Elliott G and Timmermann A 2005 Optimal forecast combination under regime switching; Int. Econ. Rev. 46(4) 1081–1102.

    Google Scholar 

  • Firdaus N N M and Talib S A 2015 Spatial interpolation of monthly precipitation in Selangor, Malaysia–Comparison and Evaluation Of methods; Proc. Int. Conf. on Global Trends in Academic Research (GTAR-2015) 1 346–357.

  • Giarno, Zadrach L D and Mustofa M A 2012 Kajian awal musim hujan and awal musim kemarau di Indonesia; J. Meteorol. Geofis. 1 1–8.

    Google Scholar 

  • Giarno 2014 Syarat keakuratan metode kombinasi runtun waktu; Thesis Hassanuddin University.

  • Giarno, Hadi M P, Suprayogi S and Murti S H 2018a Distribution of accuracy of TRMM daily rainfall in Makassar Strait; Forum Geografi 32(1) 38–52.

    Google Scholar 

  • Giarno, Hadi M P, Suprayogi S and Murti S H 2018b Modified mean field bias and local bias for improvement bias corrected satellite rainfall estimates; Mausam 69(4) 543–552.

    Google Scholar 

  • Goudenhoofdt E and Delobbe L 2009 Evaluation of radar-gauge merging methods for quantitative precipitation estimates; Hydrol. Earth Syst. Sci. 13 195–203.

    Google Scholar 

  • Hashiguchi H, Tabata Y, Yamamoto M K, Marzuki, Mori S, Yamanaka M D, Syamsudin F and Manik T 2013 Observational study on diurnal precipitation cycle over Indonesian Maritime Continent; J. Disaster Res. 8 1–9.

    Google Scholar 

  • Heistermann M, Jacobi S and Pfaff T 2013 Technical Note: An open source library for processing weather radar data (wradlib); Hydrol. Earth Syst. Sci. 17 863–871.

    Google Scholar 

  • Hidayat R and Kizu S 2010 Influence of the Madden–Julian Oscillation on Indonesian rainfall variability in austral summer; Int. J. Climatol. 30 1816–1825.

    Google Scholar 

  • Hitschfeld W and Bordan J 1954 Errors inherent in radar measurements of rainfall at attenuating wavelengths; J. Meteorol. 11 58–67.

    Google Scholar 

  • Hu Q, Yang D, Li Z, Mishra A K, Wang Y and Yang H 2014 Multi-scale evaluation of six high-resolution satellite monthly rainfall estimates over a humid region in China with dense rain gauges; Int. J. Remote Sens. 35(4) 1272–1294.

    Google Scholar 

  • Hubbert J C, Dixon M, Ellis S M and Meymaris G 2009 Weather radar ground clutter. Part I: Identification, modeling, and simulation; J. Atmos. Ocean. Technol. 26 1165–1180.

    Google Scholar 

  • Javari M 2017 Comparison of interpolation methods for modeling spatial variations of precipitation in Iran; Int. J. Env. Sci. Educ. 12(5) 1037–1054.

    Google Scholar 

  • Jewell S A and Gaussiat N 2015 An assessment of kriging-based rain-gauge–radarmerging techniques; Quart. J. Roy. Meteorol. Soc. 141 2300–2313.

    Google Scholar 

  • Keblouti M, Ouerdachia L and Boutaghane H 2012 Spatial interpolation of annual precipitation in Annaba–Algeria–Comparison and evaluation of methods; Energ. Procedia 18 468–475.

    Google Scholar 

  • Kim B S, Hong J B, Kim H S and Yoon S Y 2007 Combining radar and rain gauge rainfall estimates for flood forecasting using conditional merging method; World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat.

  • Kim B S, Kim B K and Kim H S 2008 Flood simulation using the gauge-adjusted radar rainfall and physics-based distributed hydrologic model; Hydrol. Process. 22 4400–4414.

    Google Scholar 

  • Kirtsaeng S and Chantraket P 2016 Investigation of Z–R relationships for monsoon seasons over southern Thailand; Appl. Mech. Mater. 855 159–164.

    Google Scholar 

  • Lee H S 2015 General rainfall patterns in Indonesia and the potential impacts of local seas on rainfall intensity; Water 7 1750–1768.

    Google Scholar 

  • Li X H, Zhang Q and Xu C Y 2012 Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin; J. Hydrol. 426 28–38.

    Google Scholar 

  • Ly S, Charles C and Degré A 2013 Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: A review; Biotechnol. Agron. Soc. Env. 17 392–406.

    Google Scholar 

  • Madden R A and Julian P R 1972 Description of global-scale circulation cells in the tropical with 40–50 day period; J. Atmos. Sci. 29 1109–1123.

    Google Scholar 

  • Mahavik N 2017 Bias adjustments of radar rainfall during seasonal March of the summer monsoon in the middle of Thailand; Int. J. Appl. Env. Sci. 12 577–594.

    Google Scholar 

  • Martono M and Wardoyo T 2017 Impacts of El Niño 2015 and the Indian Ocean Dipole 2016 on Rainfall in the Pameungpeuk and Cilacap Regions; Forum Geografi 31(2) 184–195.

    Google Scholar 

  • Matrosov S Y, Ralph F M, Neiman P J and White A B 2014 Quantitative assessment of operational weather radar rainfall estimates over California’s Northern Sonoma County using HMT‐west data; J. Hydrometeorol. 15 393–410.

    Google Scholar 

  • McKee J L 2015 Evaluation of gauge-radar merging methods for quantitative precipitation estimation in hydrology: A case study in the Upper Thames River basin; Thesis, The University of Western Ontario.

    Google Scholar 

  • Mitra A K, Momin I M, Rajagopal E N, Basu S, Rajeevan M N and Krishnamurti T N 2013 Gridded daily Indian monsoon rainfall for 14 seasons: Merged TRMM and IMD gauge analyzed values; J. Earth Syst. Sci. 122(5) 1173–1182.

    Google Scholar 

  • Montopoli M, Roberto N, Adirosi E, Gorgucci E and Baldini L 2017 Investigation of weather radar quantitative precipitation estimation methodologies in complex orography; Atmosphere-Basel 8(34) 1–25.

    Google Scholar 

  • Moreau E, Testud J and Le Bouar E 2009 Rainfall spatial variability observed by X-band weather radar and its implication for the accuracy of rainfall estimates; Adv. Water Resour. 32(7) 1011–1019.

    Google Scholar 

  • Ninomiya K and Murakami T 1987 The early summer rainy season (Baiu) over Japan; In: Monsoon Meteorology (eds) Chang C P and Krishnamurti T N, Oxford University Press, Chap. 4, pp. 93–121.

  • Park N W, Kyriakidis P C and Hong S 2017 Geostatistical integration of coarse resolution satellite precipitation products and rain gauge data to map precipitation at fine spatial resolutions; Remote Sens. 9(255) 1–29.

    Google Scholar 

  • Peatman S C, Matthews A J and Stevens D P 2014 Propagation of the Madden–Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation; Quart. J. Roy. Meteorol. Soc. 140 814–825.

    Google Scholar 

  • Peatman S C, Matthews A J and Stevens D P 2015 Propagation of the Madden–Julian Oscillation and scale interaction with the diurnal cycle in a high-resolution GCM; Clim. Dyn. 45 2901–2918.

    Google Scholar 

  • Pramuwardani I, Hartono, Sunarto and Sopaheluwakan A 2018 The influence of Madden–Julian Oscillation on local-scale phenomena over Indonesia during the Western north Pacific and Australian Monsoon phases; Forum Geografi 31(2) 156–169.

    Google Scholar 

  • Ramage C S 1968 Role of tropical ‘maritime continent’ in the atmospheric circulation; Mon. Weather Rev. 96 365–370.

    Google Scholar 

  • Prasetia R, As-syakur A R and Osawa T 2013 Validation of TRMM precipitation radar satellite data over Indonesian region; Theor. Appl. Climatol. 112 575–587.

    Google Scholar 

  • Qian J H 2007 Why precipitation is mostly concentrated over islands in the maritime continent; J. Atmos. Sci. 65 1428–1441.

    Google Scholar 

  • Rahman M M, Arya D S, Goelb N K dan Mitra A K 2012 Rainfall statistics evaluation of ECMWF model and TRMM data over Bangladesh for flood related studies; Meteorol. Appl. 19 501–512.

    Google Scholar 

  • Ramli S and Tahir W 2011 Radar hydrology: New Z/R relationships for quantitative precipitation estimation in Klang River Basin, Malaysia; Int. J. Env. Sci. Dev. 2(3) 1–5.

    Google Scholar 

  • Renggono F 2011 Pola sebaran hujan di DAS Larona; J. Sains Teknol. Modif. Cuaca 12 17–24.

    Google Scholar 

  • Sakya A E, Permana D D, Makmur E E, Handayani A S, Hanggoro W and Setyadi G 2016 Identification of MJO signal on various elevation station rainfall in southern Papua, Indonesia; AGU Fall Meeting 2016, pp. 1–2.

    Google Scholar 

  • Sebastianelli S, Russo F, Napolitano F and Baldini L 2010 Comparison between radar and rain gauges data at different distances from radar and correlation existing between the rainfall values in the adjacent pixels; Hydrol. Earth Syst. Sci. Discuss. 7 5171–5212.

    Google Scholar 

  • Sekaranom A B, Nurjani E, Hadi M P and Marfai M A 2018 Comparsion of TRMM precipitation satellite data over central Java Region – Indonesia; Quaest. Geogr. 37(3) 97–113.

    Google Scholar 

  • Sinclair S and Pegram G 2005 Combining radar and rain gauge rainfall estimates using conditional merging; Atmos. Sci. Lett. 6 19–22.

    Google Scholar 

  • Stout G T and Mueller E A 1968 Survey of relationships between rainfall rate and radar reflectivity in measurement precipitation; J. Appl. Meteorol. 7 465–474.

    Google Scholar 

  • Vincent C L and Lane T P 2016 Evolution of the diurnal precipitation cycle with the passage of a Madden–Julian Oscillation event through the maritime continent; Mon. Weather Rev. 144 1983–2004.

    Google Scholar 

  • Wijemannage A L K, Ranagalage M, dan Perera E N C 2016 Comparison of spatial interpolation methods for rainfall data over Sri Lanka; ACRS Proceedings.

  • Wilson J W 1970 Integration of radar and rain gauge data for improved rainfall measurement; J. Appl. Meteorol. 9(3) 489–497.

    Google Scholar 

  • Xue X, Hong Y and Limaye A S 2013 Statistical and hydrological evaluation of TRMM-based multi-satellite precipitation analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins?; J. Hydrol. 499 91–99.

    Google Scholar 

  • Yeo J X, Lee Y H and Ong J T 2015 Radar measured rain attenuation with proposed Z–R relationship at a tropical location; Int. J. Electron. Commun. (AEÜ) 69 458–461.

    Google Scholar 

  • Yang X, Xie X, Liu D L, Ji F and Wang L 2015 Spatial interpolation of daily rainfall data for local climate impact assessment over Greater Sydney Region; Adv. Meteorol., http://dx.doi.org/10.1155/2015/563629.

    Book  Google Scholar 

  • Zhang C and Ling J 2017 Barrier effect of the Indo-Pacific Maritime continent on the MJO: Perspectives from tracking MJO precipitation; J. Climatol. 30 3439–3459.

    Google Scholar 

Download references

Acknowledgements

Data for this research was supported by the Indonesian Meteorological Agency (BMKG). The authors especially appreciate the Maros Climatology Station. R and python, especially wradlib an open source for radar library has been used for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giarno.

Additional information

Communicated by Kavirajan Rajendran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giarno, Hadi, M.P., Suprayogi, S. et al. Impact of rainfall intensity, monsoon and MJO to rainfall merging in the Indonesian maritime continent. J Earth Syst Sci 129, 164 (2020). https://doi.org/10.1007/s12040-020-01427-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01427-8

Keywords

Navigation