Skip to main content
Log in

Geochemistry of the Heavy Mineral Sands from the Garampeta to the Markandi beach, southern coast of Odisha, India: Implications of high contents of REE and Radioelements attributed to Placer Monazite

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

This study presents major element, radioactive element and rare earth element (REE) concentrations of the Garampeta to Markandi beach along the southern coast of Odisha, India to delineate the source signature and resource potential of the beach placer deposits. Average ∑REE concentration of the beach sand samples is about four times higher than the average crustal concentration. The LREE concentration is higher than HREE, with a pronounced negative europium anomaly. The study also discusses about the radioelement 238U, 232Th and 40K concentrations in the study area, and their relationship with REE. Weathering condition of the source rock, based on the major elements and Th/U ratio indicated a reasonably high degree of weathering. Major element and the REE composition along with the europium anomaly, relate the beach placers to mainly charnockite and khondalite source. An elevated level of thorium (> 60 times than the average UCC values) as exhibited by the samples could be attributed due to the presence of monazites. The high concentration of REEs like Nd and Dy along with La and Ce indicates significant REE resource potential in the beach placers which is important for the resource potential in terms of the strategic mineral reserves of the country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Acharya B C, Nayak B K and Das S K 2009 Heavy mineral placer sand deposits of Kontiagarh Area, Ganjam District, Orissa, India; Resour. Geol. 59(4) 388–399.

    Article  Google Scholar 

  • Alonso E, Sherman A M, Wallington T J, Everson M P, Field F R, Roth R and Kirchain R E 2012 Evaluating rare earth element availability: A case with revolutionary demand from clean technologies; Environ. Sci. Technol. 46 3406–3414, https://doi.org/10.1021/es203518d.

    Article  Google Scholar 

  • Anjos R M, Veiga R, Macario K, Carvalho C, Sanches N, Bastos J and Gomes P R S 2006 Radiometric analysis of quaternary deposits from the south eastern Brazilian coast; Mar. Geol. 229(1–2) 29–43, https://doi.org/10.1016/j.margeo.2006.03.001.

    Article  Google Scholar 

  • Armstrong-Altrin J S 2009 Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, Mexico; Revista Mexicana de Ciencias Geológicas 26(3) 764–782. ISSN-e 2007-2902, ISSN 1026-8774, https://pdfs.semanticscholar.org/ec42/3467a426dd22b1038248478d41cb5c2e2289.pdf.

  • Armstrong-Altrin J S, Lee Y I, Kasper-Zubillaga J J, Carranza-Edwards A, Garcia D, Eby N, Balaram V and Cruz-Ortiz N L 2012 Geochemistry of beach sands along the Western Gulf of Mexico, Mexico: Implication for provenance; Chemie der Erde Geochemistry 72 345–362.

    Article  Google Scholar 

  • Armstrong-Altrin J S, Nagarajan R, Lee Y I, Kasper-Zubillaga J J and Córdoba-Saldaña L P 2014 Geochemistry of sands along the San Nicolás and San Carlos beaches, Gulf of California, Mexico: Implications for provenance and tectonic setting; Turkish J. Earth Sci. 23 533–558, https://doi.org/10.3906/yer-1309-21.

    Article  Google Scholar 

  • Armstrong-Altrin J S, Lee Y I and Kasper-Zubillaga J J 2016 Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: Implications for palaeoweathering, provenance and tectonic setting; Geol. J. 52(4) 559–582, https://doi.org/10.1002/gj.2792.

    Article  Google Scholar 

  • Balaram V 2019 Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact; Geosci. Front. 10 1285–1303.

    Article  Google Scholar 

  • Banerjee A, Chakrabarti R and Mandal S 2016 Geochemical anatomy of a spheroidally weathered diabase; Chem. Geol. 440 124–138.

    Article  Google Scholar 

  • Bangaku Naidu K, Reddy K S N, Ravi Sekhar Ch, Ganapati Rao P and Murali Krishna K N 2016 REE geochemistry of monazites from coastal sands between Bhimunipatnam and Konada, Andhra Pradesh, East coast of India; Curr. Sci. 110(8) 25, https://doi.org/10.1007/s40009-019-00819-9; https://www.currentscience.ac.in/Volumes/110/08/1550.pdf.

  • Barros de Oliveira S M, Cardoso da Silva P S, Mazzilli B P, Favaro D I T and Saueia C H 2007 Rare earth elements as tracers of sediment contamination by phosphogypsum in the Santos estuary, southern Brazil; Appl. Geochem. 22 837–850.

    Article  Google Scholar 

  • Behera P 2003 Heavy mineral in beach sands of gopalpur and paradeep along Odisha coast line, east coast of India; Indian J. Mar. Sci. 32(2) 172–174, http://nopr.niscair.res.in/bitstream/123456789/4264/1/IJMS%2032(2)%20172-174.pdf.

  • Bern C R, Shah A K, Benzel W M and Lowers H A 2016 The distribution and composition of REE-bearing minerals in placers of the Atlantic and Gulf Coastal Plains, USA; J. Geochem. Expl. 162 50–61, https://doi.org/10.1016/j.gexplo.2015.12.011.

    Article  Google Scholar 

  • Bhadra S, Das S and Bhattacharya A 2007 Shear zone-hosted migmatites (Eastern India): The role of dynamic melting in the generation of REE-depleted felsic melts, and implications for disequilibrium melting; J. Petrol. 48(3) 435–457.

  • Borra C R, Pontikes Y, Binnemans K and Gerven T V 2015 Leaching of rare earths from bauxite residue (red mud); Minerals Engineering 76 20–27, https://doi.org/10.1016/j.mineng.2015.01.005.

    Article  Google Scholar 

  • Chaillou G, Anschutz P, Lavaux G and Blanc G 2006 Rare earth elements in the modern sediments of the Bay of Biscay (France); Mar. Chem. 100 39–52.

    Article  Google Scholar 

  • Chaudhuri J B and Newesely H 1993 On the REE-bearing minerals in the beach placers of Puri, Orissa District; J. Southeast Asian Earth Sci. 8(1–4) 287–291.

    Article  Google Scholar 

  • Das B K, AL-Mikhlafi A S and Kaur P 2006 Geochemistry of Mansar Lake sediments, Jammu, India: Implication for source-area weathering, provenance, and tectonic setting; J. Asian Earth Sci. 26 649–668.

    Article  Google Scholar 

  • Dasgupta S and Sengupta P 2002 Indo-Antarctica correlation: A perspective from the Eastern Ghats Belt; In: Proterozoic East Gondwana: Supercontinent Assembly and Breakup (eds) Yoshida M, Windley B F and Dasgupta S, Geol. Soc. London, Spec. Publ. 206 131–143, https://doi.org/10.1144/gsl.sp.2003.206.01.08.

  • Dash B, Sahu K N and Bowes D R 1987 Geochemistry and original nature of Precambrian khondalites in the Eastern Ghats, Orissa, India; Trans. Roy. Soc. Edinburgh: Earth Sci. 78 115–127.

    Article  Google Scholar 

  • Fernandez V 2017 Rare-earth elements market: A historical and financial perspective; Resources Policy 53 26–45.

    Article  Google Scholar 

  • Franus W, Wiatros-Motyka M M and Wdowin M 2015 Coal fly ash as a resource for rare earth elements; Environ. Sci. Pollut. Res. 22(12) 9464–9474.

    Article  Google Scholar 

  • Gallala W, Gaied M E and Montacer M 2009 Detrital mode, mineralogy and geochemistry of the Sidi Aïch Formation (Early Cretaceous) in central and southwestern Tunisia: Implications for provenance, tectonic setting and paleoenvironment; J. African Earth Sci. 53 159–170.

    Article  Google Scholar 

  • Ghosal S, Agrahari S, Guin R and Sengupta D 2017 Implications of modelled radioactivity measurements along coastal Odisha, Eastern India for heavy mineral resources; Estuar. Coast. Shelf Sci. 184 83–89.

    Article  Google Scholar 

  • Global Correlation of A-type granites and related rocks, their mineralization and significance in lithospheric evolution 2010; Geological Survey of India International Geoscience Programme, IGCP-510.

  • Hannigan R, Dorval E and Jones C 2010 The rare earth element chemistry of estuarine surface sediments in the Chesapeake Bay; Chem. Geol. 27 20–30.

    Article  Google Scholar 

  • Henderson P 1984 General geochemical properties and abundances of the rare earth elements; In: Rare Earth Element Geochemistry (ed.) Henderson P, vol. 2, Elsevier, Amsterdam.

    Google Scholar 

  • Ishee J, Alpern E and Demas A 2013 Going critical: Being strategic with our mineral resources; US Geological Survey Science Feature: Miner. (https://www2.usgs.gov/blogs/features/science_feature/minerals/).

  • Kashiwakura S, Kumagai Y, Kubo H and Wagatsuma K 2013 Dissolution of rare earth elements from coal fly ash particles in a dilute H2SO4 solvent; Open J. Phys. Chem. 3 69–75, https://doi.org/10.4236/ojpc.2013.32009.

    Article  Google Scholar 

  • Kingsnorth D J 2012 Rare earths supply security: Dream or possibility; In: Proceedings of the Oral Presentation at the 4th Freiberg Innovations Symposium, Freiberg, Germany.

  • Komar P D and Wang C 1984 Processes of selective grain transport and the formation of placers on beaches; J. Geol. 92(6) 637–655.

    Article  Google Scholar 

  • Kritsananuwat R, Sahoo S K, Fukushi M and Chanyotha S 2015 Distribution of rare earth elements, thorium and uranium in Gulf of Thailand’s sediments; Environ. Earth Sci. 73 3361–3374, https://doi.org/10.1007/s12665-014-3624-8.

    Article  Google Scholar 

  • Le Bas M J, Le Maitre R W, Streckeisen A and Zanettin B 1986 A chemical classification of volcanic rocks based on the total alkali-silica diagram; J. Petrol. 27(3) 745–750.

    Article  Google Scholar 

  • Liao C, Li Z, Zeng Y, Chen J, Zhong L and Wang L 2017 Selective extraction and recovery of rare earth metals from waste fluorescent powder using alkaline roasting-leaching process; J. Rare Earths 35(10) 1008–1013.

    Article  Google Scholar 

  • Liu J, Bian D, Zheng Y, Chu X, Lin Y, Wang M, Lin Z, Li M, Zhang Y and Guan S 2020 Comparative in-vitro study on binary Mg–RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems; Acta Biomaterialia 102 508–528, https://doi.org/10.1016/j.actbio.2019.11.013.

    Article  Google Scholar 

  • Machacek E and Fold N 2014 Alternative value chains for rare earths: The Anglo-deposit developers; Resources Policy 42 53–64.

    Article  Google Scholar 

  • Mange M A and Wright D T 2007 Heavy Minerals in Use; Elsevier, pp. 14–30.

  • Matizamhuka W 2018 The impact of magnetic materials in renewable energy-related technologies in the 21st century industrial revolution: The case of South Africa; Adv. Mater. Sci. Eng., https://doi.org/10.1155/2018/3149412.

    Article  Google Scholar 

  • McLenan S M, Nance W B and Taylor S R 1980 Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust; Geochim. Cosmochim. Acta 44 1833–1839.

    Article  Google Scholar 

  • Mohanty A K, Das S K, Vijayan V, Sengupta D and Saha S K 2003 Geochemical studies of monazite sands of Chhatrapur beach placer deposit of Orissa, India by PIXE and EDXRF method; Nuclear Instru. Methods Phys. Res. B 211 145–154.

    Google Scholar 

  • Mohanty A K, Sengupta D, Das S K, Vijayan V and Saha S K 2004 Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa, India; Radiat. Meas. 38(2) 153–165, https://doi.org/10.1016/j.radmeas.2003.08.003.

    Article  Google Scholar 

  • Mohapatra S, Behera P and Das S K 2015 Heavy mineral potentiality and alteration studies for ilmenite in astaranga beach; Int. J. Environ. Eng. Sci. Technol. Res. 3(3) 31–37, https://doi.org/10.4236/gep.2015.31005.

    Article  Google Scholar 

  • Molycorp 2013 Molycorp’s History; http://www.molycorp.com/about-us/our-history.

  • Nesbitt H W and Young G M 1982 Early Proterozoic climate and plate motions inferred from major element chemistry of lutites; Nature 299 715–717.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1984 Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations; Geochem. Cosmochim. Acta 48 1523–1534.

    Article  Google Scholar 

  • Ni Y, Hughes J M and Mariano A N 1995 Crystal chemistry of the monazite and xenotime structures; Am. Mineral. 80 21–26.

    Article  Google Scholar 

  • Palaparthi J, Chakrabarti R, Banerjee S, Guin R, Ghosal S, Agrahari S and Sengupta D 2017 Economically viable rare earth element deposits along beach placers of Andhra Pradesh, eastern coast of India; Arab. J. Geosci. 10 201, https://doi.org/10.1007/s12517-017-2973-5.

    Article  Google Scholar 

  • Panda N K, Rajagopalan V and Ravi G S 2003 Rare-earth-element geochemistry of placer monazites from Kalingapatnam Coast, Srikakulam district, Andhra Pradesh; J. Geol. Soc. India 62(4) 429–438.

    Google Scholar 

  • Papadopoulus A, Christofides G, Koroneos A and Hauzenberger C 2015 U, Th and REE content of heavy minerals from beach sand samples of Sithonia Peninsula (northern Greece); Neues Jahrbuch für Mineralogie–Abhandlungen (J. Miner. Geochem.) 192(2) 107–116, https://doi.org/10.1127/njma/2015/0274.

  • Paul D K, Barman T R, McNaughton N J, Fletcher I R, Potts P J, Ramakrishnan M and Augustine P F 1990 Archean-Proterozoic evolution of charnockites: Isotopic and geochemical evidence from granulites of the Eastern Ghats Belt; J. Geol. 98(2) 253–263.

    Article  Google Scholar 

  • Ramakrishnan M, Nanda J K and Augustine P F 1998 Geological evolution of the proterozoic Eastern Ghats Mobile Belt; Geological Survey of India Special Publication 44.

  • Rao A T, DhanaRaju R, Dhanamjaya Rao E N and Abraham Jaydeep V 2018 Electron micro-probe mineral chemistry and dating of monazite from the cordierite gneisses near Vizianagaram in the Eastern Ghat Granulite Belt, India; J. Appl. Geochem. 20(2) 181–191.

    Google Scholar 

  • Rao N S, Sengupta D, Guin R and Saha S K 2009 Natural radioactivity measurements in beach sand along southern coast of Orissa, Eastern India; Environ. Earth Sci. 59 593–601, https://doi.org/10.1007/s12665-009-0057-x.

    Article  Google Scholar 

  • Roy P D, Caballero M, Lozano R and Smykatz-Kloss W 2008 Geochemistry of late Quaternary sediments from Tecocomulco Lake, central Mexico: Implication to chemical weathering and provenance; Chemie der Erde Geochemistry 68 383–393.

    Article  Google Scholar 

  • Roy P S 1999 Heavy mineral beach placers in south eastern Australia: Their nature and genesis; Econ. Geol. 94 567–588.

    Article  Google Scholar 

  • Rudnick R L and Gao S 2003 The composition of the continental crust; In: Treatise on Geochemistry 3, The Crust (eds) Holland H D and Turekian K K, Elsevier-Pergamon, Oxford, 64p, https://doi.org/10.1016/b0-08-043751-6/03016-4.

  • Saha S, Banerjee S, Burley S D, Ghosh A and Saraswati P K 2010 The influence of flood basaltic source terrains on the efficiency of tectonic setting discrimination diagrams: An example from the Gulf of Khambhat, western India; Sedim. Geol. 228(1–2) 1–13.

    Article  Google Scholar 

  • Sarangi A K 2011 Uranium resource development and sustainability – Indian case study; In: Modelling Trends in Solid and Hazardous Waste Management (eds) Sengupta D and Agrahari S, Springer Nature, Singapore, pp. 105–126.

    Google Scholar 

  • Sengupta P, Sen J, Dasgupta S, Raith M, Bhui U K and Ehl J 1999 Ultra-high temperature metamorphism of metapelitic granulites from Kondapalle, Eastern Ghats Belt: Implications for the Indo-Antarctic correlation; J. Petrol. 40 1065–1087.

    Article  Google Scholar 

  • Taylor S R and McLennan S M 1980 The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks; Phil. Trans. Roy. Soc. Math. Phys. Eng. Sci. 301(1461), https://doi.org/10.1098/rsta.1981.0119.

  • Taylor S R and McLennan S M 1985 The continental crust: Its composition and evolution. An examination of the Geochemical record preserved in sedimentary rocks; Blackwell, London.

    Google Scholar 

  • Tunsu C, Ekberg C and Retegan T 2014 Characterization and leaching of real fluorescent lamp waste for the recovery of rare earth metals and mercury; Hydrometallurgy 144–145 91–98, https://doi.org/10.1016/j.hydromet.2014.01.019.

    Article  Google Scholar 

  • White W M 2013 Geochemistry; 1st edn, Wiley-Blackwell, UK.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial assistance received from the Science and Engineering Research Board (SERB), DST, Govt. of India, under the Project Code: YSS/2015/000979.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shayantani Ghosal.

Additional information

Communicated by N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosal, S., Agrahari, S., Banerjee, S. et al. Geochemistry of the Heavy Mineral Sands from the Garampeta to the Markandi beach, southern coast of Odisha, India: Implications of high contents of REE and Radioelements attributed to Placer Monazite. J Earth Syst Sci 129, 152 (2020). https://doi.org/10.1007/s12040-020-01419-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01419-8

Keywords

Navigation