Skip to main content

Advertisement

Log in

Mixed carbonate–siliciclastic sedimentation in the Upper Cretaceous Nilkanth Formation, Garhwal Himalaya, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The Upper Cretaceous Nilkanth Formation awaits a process-based depositional model despite being a topic of discussion between stratigraphers, palaeobiologists and structural geologists over the last few decades. Sedimentary facies analysis of a ~50 m thick section along a ~2.8 km long section along Rishikesh–Tal Bidhashini in Pauri Garhwal district of Uttarakhand allowed documentation of mixed carbonate–silicicalstic facies types, dominantly consisting of sand- and pebble-sized carbonate debris mixed with siliciclastics in a proximal to distal facies tract. Ten different facies types that include matrix-rich and matrix-poor shelly conglomerate, mixed clastic-carbonate wackestone, packstone, impure calcirudite and calcarenite, biomicrite and ferruginous sandstone are documented. Delineation of facies association and documentation of facies stacking pattern provide a post-Santonian mixed carbonate–siliciclastic sedimentation history of the Nilkanth Formation, deposited in the form of mass flows of varied rheology on a barred low- to moderate-gradient carbonate ramp, formed at the leading edge of the India plate before its collision with the Kohistan–Ladakh arc. Carbonate clasts comprising bivalves, crinoids, algae, bryozoan, etc., were produced in a narrow high-energy transgressive coastline and supplied across shelf along with reworked siliciclastics from clastic shoreface bar. It is argued that the reworked fossils, including the bryozoa Ceriocava Nilkanthi, present within massflows may not justify fixing of an absolute age for the formation but may definitely help in providing an age range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Ali J R and Aitchison J C 2008 Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma); Earth Sci. Rev. 88(3–4) 145–166.

    Google Scholar 

  • Belperio A P and Searle D E 1988 Terrigenous and carbonate sedimentation in the Great Barrier Reef province; In: Developments in Sedimentology, Elsevier 42 143–174.

    Google Scholar 

  • Bera M K, Sarkar A, Chakraborty P P, Loyal R S and Sanyal P 2008 Marine to continental transition in Himalayan foreland; Geol. Soc. Am. Bull. 120(9–10) 1214–1232.

    Google Scholar 

  • Bhatia S B and Bhargava O N 2005 Regional correlation of the Palaeogene sediments of the Himalayan foreland basin; Palaeontol. Soc. India, Spec. Publ. 2 105–123.

    Google Scholar 

  • Boggs S Jr 2011 Principles of sedimentology and stratigraphy; 5th edn, Pearson Prentice Hall, 653p.

  • Branney M J and Kokelaar P 1992 A reappraisal of ignimbrite emplacement: Progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite; Bull. Volcanol. 54(6) 504–520.

    Google Scholar 

  • Burg J P 2011 The Asia–Kohistan–India collision: Review and discussion; In: Arc–continent collision, Springer, Berlin, Heidelberg, pp. 279–309.

    Google Scholar 

  • Chakraborty P P, Tandon S K and Saha S 2019 Development of Phanerozoic sedimentary basins of India; J. Asian Earth Sci. 184 103991.

    Google Scholar 

  • Chatterjee S and Scotese C 2010 The wandering Indian plate and its changing biogeography during the Late Cretaceous-Early Tertiary period; In: New aspects of Mesozoic biodiversity, Springer, Berlin, Heidelberg, pp. 105–126.

    Google Scholar 

  • Chatterjee S, Goswami A and Scotese C R 2013 The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia; Gondwana Res. 23(1) 238–267.

    Google Scholar 

  • Clifton H E 1969 Beach lamination: Nature and origin; Mar. Geol. 7(6) 553–559.

    Google Scholar 

  • Clifton H E 2006 A reexamination of facies models for clastic shorelines; In: Facies Models Revisited (eds) Posamentier H W and Walker R G, SEPM Spec. Publ. 84 293–337.

  • Dorsey R J and Kidwell S M 1999 Mixed carbonate–siliciclastic sedimentation on a tectonically active margin: Example from the Pliocene of Baja California Sur, Mexico; Geology 27(10) 935–938.

    Google Scholar 

  • Dunham R J 1962 Classification of carbonate rocks according to depositional textures; AAPG Memoir 1 108–121.

    Google Scholar 

  • Felix M and Peakall J 2006 Transformation of debris flows into turbidity currents: Mechanisms inferred from laboratory experiments; Sedimentology 53(1) 107–123.

    Google Scholar 

  • Flood P G and Orme G R 1988 Mixed siliciclastic/carbonate sediments of the northern Great Barrier reef province, Australia; In: Developments in Sedimentology, Elsevier 42 175–205.

    Google Scholar 

  • Gaetani M and Garzanti E 1991 Multicyclic history of the northern India continental margin (northwestern Himalaya); Am. Assoc. Petrol. Geol. Bull. 75 1427–1446.

    Google Scholar 

  • Jagoutz O E, Burg J P, Hussain S, Dawood H, Pettke T, Iizuka T and Maruyama S 2009 Construction of the granitoid crust of an island arc. Part I: Geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan); Contrib. Mineral. Petrol. 158(6) 739.

  • Khan S D, Walker D J, Hall S A, Burke K C, Shah M T and Stockli L 2009 Did the Kohistan–Ladakh island arc collide first with India?; Geol. Soc. Am. Bull. 121(34) 366–384.

    Google Scholar 

  • Kneller B C and Branney M J 1995 Sustained high-density turbidity currents and the deposition of thick massive sands; Sedimentology 42(4) 607–616.

    Google Scholar 

  • Mathur N S and Juyal K P 1996 Time of emplacement of ophiolitic mélange in Indus Suture Zone, Ladakh Himalaya: A palaeontological approach; In: Contributions to XV Indian Colloquium on Micropaleontology and Stratigraphy, pp. 169–176.

  • Mathur N S and Juyal K P 2000a Atlas of early Palaeogene invertebrate fossils of the Himalayan foothills belt; Wadia Institute of Himalayan Geology, WIHG Monograph Series (No. 1) Bishen Singh Mahendra Pal Singh, Dehradun, 257p.

  • Mathur N S and Juyal K P 2000b Paleontological evidence for the upheaval history of western Himalaya during the Paleogene; Him. Geol. 21(1)109–131.

    Google Scholar 

  • Mathur V K, Ghosh A K, Misra P S and Kacker A K 2008 Record of Cretaceous Biota from Shell Limestone (Nilkanth Formation), Mussoorie Syncline, Lesser Himalaya, India; J. Geol. Soc. India 71(3) 371–376.

    Google Scholar 

  • Mount J F 1984 Mixing of siliciclastic and carbonate sediments in shallow shelf environments; Geology 12(7) 432–435.

    Google Scholar 

  • Mukhopadhyay S, Samanta P, Bhattacharya S and Sarkar S 2019 Stratigraphic evolution and architecture of the terrestrial succession at the base of the Neoproterozoic Badami Group, Karnataka, India; In: Geological evolution if the Precambrian Indian shield (ed.) Mondal M E A, pp. 121–167.

  • Mutti E, Tinterri R, Benevelli G, Di Biase D and Cavanna G 2003 Deltaic, mixed and turbidite sedimentation of ancient foreland basins; Mar. Petrol. Geol. 20(6–8) 733–755.

    Google Scholar 

  • Nemec W 1990 Deltas – remarks on terminology and classification; In: Coarse-grained Deltas, Spec. Publ. Int. ASS. Sediment 10 3–12.

  • Prasad V and Sarkar S 2002 Fossil Sc Ytonema (nostocales) from the Subathu Formation of Tal valley, Garhwal Himalaya, India; J. Palaeontol. Soc. India 47 145–149.

    Google Scholar 

  • Ryan-Mishkin K, Walsh J P, Corbett D R, Dail M B and Nittrouer J A 2009 Modern sedimentation in a mixed siliciclastic-carbonate coral reel environment, La Parguera, Puerto Rico; Carib. J. Sci. 45(2–3) 151–168.

    Google Scholar 

  • Sahagian D, Pinous O, Olferiev A and Zakharov V 1996 Eustatic curve for the Middle Jurassic–Cretaceous based on Russian platform and Siberian stratigraphy: Zonal resolution; AAPG Bull. 80(9) 1433–1458.

    Google Scholar 

  • Samanta P, Mukhopadhyay S, Mandal S and Sarkar S 2019 Controls on cyclic sedimentation within the Neoproterozoic Sirbu shale, Vindhyan basin, central India; In: Geological Evolution of Precambrian Indian shield (ed.) Mondal M E A, pp. 271–295.

  • Sarkar S, Chakraborty P P and Bose P K 1996 Proterozoic Lakheri Limestone, central India: Facies, paleogeography and physiography; Geol. Soc. India Memoir 36 5–26.

    Google Scholar 

  • Schlager W, Reijmer J J and Droxler A 1994 Highstand shedding of carbonate platforms; J. Sedim. Res. 64(3b) 270–281.

    Google Scholar 

  • Schwarzacher W and Fischer A G 1982 Limestone-shale bedding and perturbations of the Earth’s orbit; In: Cyclic and event stratification, Springer, Berlin, Heidelberg, pp. 72–95.

    Google Scholar 

  • Seidler L and Steel R 2001 Pinch‐out style and position of tidally influenced strata in a regressive–transgressive wave‐dominated deltaic sandbody, Twentymile Sandstone, Mesaverde Group, NW Colorado; Sedimentology 48(2) 399–414.

    Google Scholar 

  • Shringarpure D and Shah A 1987 Occurrence of xenacanthid freshwater shark teeth in the mudstone lithofacies of Nilkanth, Pauri, Gahrwal Himalaya; Curr. Sci. 56(13) 649–650.

    Google Scholar 

  • Sinclair H D 1997 Flysch to molasse transition in peripheral foreland basins: The role of the passive margin versus slab breakoff; Geology 25(12) 1123–1126.

    Google Scholar 

  • Singh I B 1999 On some sedimentological and palaeoecological aspects of Subathu–Dagshai–Kasauli succession of Simla Hills; J. Palaeontol. Soc. India 21 19–28.

    Google Scholar 

  • Srikantia S V and Bhargava O N 1967 Kakara Series – a new Palaeocene Formation in Simla Hills; Bull. Geol. Soc. India 4(4) 114–116.

    Google Scholar 

  • Srikantia S V and Bhargava O N 1978 The Indus tectonic belt of Ladakh Himalaya: Its geology, significance and evolution; In: Current Trends in Geology: Tectonic Geology of the Himalaya (ed.) Saklani P S, pp. 43–62.

  • Tamura T, Nanayama F, Saito Y, Murakami F, Nakashima R E I and Watanabe K 2007 Intra‐shoreface erosion in response to rapid sea‐level fall: Depositional record of a tectonically uplifted strand plain, Pacific coast of Japan; Sedimentology 54(5) 1149–1162.

    Google Scholar 

  • Taylor P D and Allison P A 1998 Bryozoan carbonates through time and space; Geology 26(5) 459–462.

    Google Scholar 

  • Taylor P D and James N P 2013 Secular changes in colony‐forms and bryozoan carbonate sediments through geological history; Sedimentology 60(5) 1184–1212.

    Google Scholar 

  • Thakur V C 1992 NeoTethys and collision tectonics in Ladakh and Kasmir Himalayas; Indian J. Petrol. Geol. 1(1) 130–147.

    Google Scholar 

  • Tucker M E 2003 Mixed clastic–carbonate cycles and sequences: Quaternary of Egypt and Carboniferous of England; Geol. Croat. 56(1) 19–37.

    Google Scholar 

  • Valdiya K S 1998 Dynamic Himalaya; University Press, India.

    Google Scholar 

  • Van der Voo R, Spakman W and Bijwaard H 1999 Tethyan subducted slabs under India; Earth Planet. Sci. Lett. 171(1) 7–20.

    Google Scholar 

  • Walker R G and Plint A G 1992 Wave and storm-dominated shallow marine systems; In: Facies Models: Response to Sea-Level Change (eds) Walker R G and James N P, Geological Association of Canada, St. John’s, Newfoundland, pp. 219–238.

  • Watts A B and Steckler M S 1979 Subsidence and eustasy at the continental margin of eastern North America; Am. Geophys. Union, Maurice Ewing Symp. Ser. 3 218–234.

    Google Scholar 

  • Wright E E, Hine A, Goodbread S and Locker S D 2005 The effect of sea-level and climate change on the development of a mixed siliciclastic–carbonate, deltaic coastline: Suwannee River, Florida, U.S.A; J. Sedim. Res. 75 621–635.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the infrastructure help provided by their host institutes. AS acknowledges UGC for extending financial help in the form of fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditi Sharma.

Additional information

Communicated by Santanu Banerjee

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.R., Sharma, A., Chakraborty, P.P. et al. Mixed carbonate–siliciclastic sedimentation in the Upper Cretaceous Nilkanth Formation, Garhwal Himalaya, India. J Earth Syst Sci 129, 125 (2020). https://doi.org/10.1007/s12040-020-01383-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01383-3

Keywords

Navigation