Skip to main content

Advertisement

Log in

Compositional mapping and the evolutionary history of Mare Tranquillitatis

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

This study signifies the compositional variability of Mare Tranquillitatis basalt and the Irregular Mare patches (IMPs) – the youngest volcanic feature on the Moon, using hyperspectral data from Moon Mineralogy Mapper (M3) for the first time. Along with composition, the topographic and morphological mapping has been done to understand the possible evolutionary history of this mare. Total 22 spectral units has been identified based on Integrated Band Depth (IBD) parameter technique. Number of reflectance spectra were collected from the fresh craters of each spectral unit and quantitative mineralogical abundances estimated using band parameters like band centre, band strength and band area. The result shows abundances of olivine and pyroxene mixture bearing material in the mare basalt. The compositional map shows smaller spectral units in the western-low lying half and larger spatial distribution of spectral unit in the eastern half depicts probable large-scale volcanic eruption in the eastern part that may have flowed to longer distances from the Cauchy shield to the central mare. This study marks 61 new domes in the Cauchy shield area and also depicts possible formation and evolutionary history of the Mare Tranquillitatis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  • Adams J B 1974 Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the Solar System; J. Geophys. Res. 79 4829–4836.

    Google Scholar 

  • Adams J B 1975 Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock-forming minerals; In: Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals (ed.) Karr C III, Academic Press, New York, pp. 91–116.

    Google Scholar 

  • Basaltic Volcanism Study Project (BVSP) 1981 Basaltic volcanism on the terrestrial planets; New York: Pergamon Press.

    Google Scholar 

  • Beaty D W and Albee A L 1978 Comparative petrology and possible genetic relations among the Apollo 11 basalt; Proc. Lunar Planet. Sci. 9 359–463.

    Google Scholar 

  • Bell III J F and Hawke B R 1995 Compositional variability of the Serenitatis/Tranquillitatis region of the Moon from telescopic multispectral imaging and spectroscopy; Icarus 118(1) 51–68.

    Google Scholar 

  • Besse S, Sunshine J, Staid M, Boardman J, Pieters C, Guasqui P, Malaret E, McLaughlin A, Yokota Y and Li J Y 2013 A visible and near-infrared photometric correction for Moon Mineralogy Mapper (M3); Icarus 222(1) 229–242.

    Google Scholar 

  • Bhatt H V, Solanki P M and Chauhan M 2018 Mineralogical and geomorphological mapping of western central part of Mare Tranquillitatis using hyperspectral imager onboard Chandrayaan-1; IJRAT 6 1296–1301.

    Google Scholar 

  • Bhatt H, Chauhan P, Bhattacharya S, Chauhan M and Solanki P 2019 Comparative spectral analysis approach: The study of Lunar Mineralogy using two hyperspectral data from Chandrayaan-1; In: 50th Proc. Lunar Planet. Sci. 2364.

  • Boardman J W, Pieters C M, Green R O, Lundeen S R, Varanasi P, Nettles J, Petro N, Isaccson P, Besse S and Taylor L A 2011 Measuring moonlight: An overview of the spatial properties, lunar coverage, selenolocation, and related Level 1B products of the Moon Mineralogy Mapper; J. Geophys. Res.: Planet 116(E6).

  • Braden S E, Stopar J D, Robinson M S, Lawrence S J, Van Der Bogert C H and Hiesinger H 2014 Evidence for basaltic volcanism on the Moon within the past 100 million years; Nat. Geosci. 7(11) 787.

    Google Scholar 

  • Burns R G 1989 Spectral mineralogy of terrestrial planets: Scanning their surfaces remotely; Mineral. Mag. 53 135–151.

    Google Scholar 

  • Burns R G 1993 Mineralogical applications of crystal field theory; 2nd edn, Cambridge: Cambridge University Press, 523p.

  • Charette M P, McCord T B, Pieters C and Adams J B 1974 Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils; J. Geophys. Res. 79(11) 1605–1613.

    Google Scholar 

  • Chauhan P, Kaur P, Srivastava N, Bhattacharya S, Ajai, Kiran Kumar A S and Goswami J N 2012 Compositional and morphological analysis of high-resolution remote sensing data over central peak of Tycho crater on the Moon: Implications for understanding lunar Interior; Curr. Sci. 102(7) 1041–1046.

  • Chauhan M, Bhattacharya S, Pathak S and Chauhan P 2018 Remote spectral–compositional analysis of basalt mineralogy at Hansteen‐Billy, Moon; Meteor. Planet. Sci. 53(12) 2583–2595.

    Google Scholar 

  • Clark R N and Roush T L 1984 Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications; J. Geophys. Res.: Solid Earth 89(B7) 6329–6340.

  • Clark R N, Pieters C M, Green R O, Boardman J W and Petro N E 2011 Thermal removal from near‐infrared imaging spectroscopy data of the Moon; J. Geophys. Res.: Planets 116(E6).

  • Cloutis E A, Gaffey M J, Jackowski T L and Reed K L 1986 Calibrations of phase abundance, composition, and particle size distribution for olivine–orthopyroxene mixtures from reflectance spectra; J. Geophys. Res.: Solid Earth 91(B11) 11,641–11,653.

  • Cloutis E A and Gaffey M J 1991a Pyroxene spectroscopy revisited – Spectral compositional correlations and relationship to geothermometry; J. Geophys. Res. 96 22,809–22,826.

    Google Scholar 

  • Cloutis E A and Gaffey M J 1991b Spectral-compositional variations in the constituent minerals of mafic and ultramafic assemblages and remote sensing implications; Earth Moon Planets 53(1) 11–53.

    Google Scholar 

  • Cloutis E A, Sunshine J M and Morris R V 2004 Spectral reflectance‐compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry; Meteor. Planet. Sci. 39(4) 545–565.

    Google Scholar 

  • Crown D A and Pieters C M 1987 Spectral properties of plagioclase and pyroxene mixtures and the interpretation of lunar soil spectra; Icarus 72 492–506.

    Google Scholar 

  • De Hon R A 2017 A two-basin model for Mare Tranquillitatis; Proc. Lunar Planet. Sci. 48.

    Google Scholar 

  • Dhingra D, Pieters C M, Isaacson P, Staid M, Mustard J, Klima R, Taylor L A, Kramer G, Nettles J and M3 team 2010 Spectroscopic signature of the high titanium basalts at Mare Tranquillitatis from moon mineralogy mapper (M3); In: Proc. Lunar Planet. Sci. XXXXI, Abstract 2494.

  • Elder C M, Hayne P O, Bandfield, J L, Ghent R R, Williams J P, Hanna K D and Paige D A 2017 Young lunar volcanic features: Thermophysical properties and formation; Icarus 290 224–237.

    Google Scholar 

  • Gaffey M J, Bell J F, Brown R H, Burbine T H, Piatek J L, Reed K L and Chaky D A 1993 Mineralogical variations within the S-type asteroid class; Icarus 106(2) 573–602.

    Google Scholar 

  • Gaffey M J, Cloutis E A, Kelley M S and Reed K L 2002 Mineralogy of asteroids; In: Asteroids III (eds) Bottke W F, Cellino A, Paolicchi P and Binzel R P, Tucson, Arizona: The University of Arizona Press, pp. 183–204.

  • Giguere T A, Taylor G J, Hawke B R and Lucey P G 2000 The titanium contents of lunar Mare basalts; Meteor. Planet. Sci. 35(1) 193–200.

    Google Scholar 

  • Gillis J J, Jolliff B L and Elphic R C 2003 A revised algorithm for calculating TiO2 from Clementine UVVIS data: A synthesis of rock, soil, and remotely sensed TiO2 concentrations; J. Geophys. Res.: Planets 108(E2).

  • Goswami J N and Annadurai M 2009 Chandrayaan-1: India’s first planetary science mission to the Moon; Curr. Sci. 96 486–491.

    Google Scholar 

  • Head III J W 1976 Lunar volcanism in space and time; Rev. Geophys. 14(2) 265–300.

    Google Scholar 

  • Hiesinger H, Jaumann R, Neukum G and Head III J W 2000 Ages of Mare basalts on the lunar nearside; J. Geophys. Res.: Planets 105(E12) 29,239–29,275.

  • Hollister L S and Hargraves R B 1970 Compositional zoning and its significance in pyroxenes from two coarse grained Apollo 11 samples; Geochim. Cosmochim. Acta (Suppl.) 1 541.

    Google Scholar 

  • Jerde E A, Snyder G A, Taylor L A, Yun-Gang L and Schmitt R A 1994 The origin and evolution of lunar high-Ti basalts: Periodic melting of a single source at Mare Tranquillitatis; Geochim. Cosmochim. Acta 58(1) 515–527.

    Google Scholar 

  • Johnson J R, Larson S M and Singer R B 1991 Remote sensing of potential lunar resources: 1. Near‐side compositional properties; J. Geophys. Res.: Planets 96(E3) 18,861–18,882.

  • Kaur P, Bhattacharya S, Chauhan P and Kumar A K 2013 Mineralogy of Mare Serenitatis on the near side of the Moon based on Chandrayaan-1 Moon Mineralogy Mapper (M3) observations; Icarus 222(1) 137–148.

    Google Scholar 

  • King T V and Ridley W I 1987 Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications; J. Geophys. Res. 92 11,457–11,469.

    Google Scholar 

  • Klima R L, Pieters C M and Dyar M D 2007 Spectroscopy of synthetic Mg–Fe pyroxenes I: Spin‐allowed and spin‐forbidden crystal field bands in the visible and near‐infrared; Meteor. Planet. Sci. 42(2) 235–253.

    Google Scholar 

  • Klima R L, Dyar M D and Pieters C M 2011a Near‐infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure; Meteor. Planet. Sci. 46(3) 379–395.

    Google Scholar 

  • Klima R L, Pieters C M, Boardman J W, Green R O, Head J W, Isaacson P J, Mustard J F, Nettles J W, Petro N E, Staid M I, Sunshine J M, Taylor L A and Tompkins S 2011b New insights into lunar petrology: Distribution and composition of prominent low‐Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M3); J. Geophys. Res.: Planets 116(E6).

  • Kodama S and Yamaguchi Y 2003 Lunar Mare volcanism in the eastern nearside region derived from Clementine UV/VIS data; Meteor. Planet. Sci. 38(10) 1461–1484.

    Google Scholar 

  • Li B, Ling Z, Zhang J, Chen J, Ni Y and Liu C 2018 Displacement-length ratios and contractional strains of lunar wrinkle ridges in Mare Serenitatis and Mare Tranquillitatis; J. Struct. Geol. 109 27–37.

    Google Scholar 

  • Lucey P G, Taylor G J and Malaret E 1995 Abundance and distribution of iron on the Moon; Science 268(5214) 1150–1153.

    Google Scholar 

  • Melendrez D E, Johnson J R, Larson S M and Singer R B 1994 Remote sensing of potential lunar resources: 2. High spatial resolution mapping of spectral reflectance ratios and implications for nearside Mare TiO2 content; J. Geophys. Res.: Planets 99(E3) 5601–5619.

  • Miyamoto M, Kinoshita M and Takano Y 1983 Spectral reflectance (0.25–2.5 μm) of olivine and pyroxene from an ordinary chondrite; Mem. Natl. Inst. Polar Res., Spec. Issue 30 367–377.

    Google Scholar 

  • Muller P M and Sjogren W L 1968 Mascons: Lunar mass concentrations; Science 161(3842) 680–684.

    Google Scholar 

  • Mustard J F, Pieters C M, Issacson P J, Head J W, Besse S, Clark R N, Klima R L, Petro N E, Staid M I, Sunshine J M, Runyon C J and Tompkin S 2011 Compositional diversity and geologic insights of the Aristarchus crater from Moon Mineralogical Mapper data; J. Geophys. Res. 116 E00G12.

  • Nyquist L E and Shih C Y 1992 The isotopic record of lunar volcanism; Geochim. Cosmochim. Acta 56(6) 2213–2234.

    Google Scholar 

  • Neumann G A, Zuber M T, Wieczorek M A, Head J W, Baker D M, Solomon S C and Goossens S J 2015 Lunar impact basins revealed by gravity recovery and interior laboratory measurements; Science Adv. 1(9) e1500852.

    Google Scholar 

  • Papike J J, Hodges F N, Bence A E, Cameron M and Rhodes J M 1976 Mare basalts: Crystal chemistry, mineralogy, and petrology; Rev. Geophys. 14(4) 475–540.

    Google Scholar 

  • Pieters C M 1978 Mare basalt types on the front side of the moon – A summary of spectral reflectance data; Proc. Lunar Planet. Sci. 9 2825–2849.

    Google Scholar 

  • Pieters C M 1993 Compositional diversity and stratigraphy of the lunar crust derived from reflectance spectroscopy; Remote Geochemical Analysis Elemental and Mineralogical Composition, pp. 309–339.

  • Pieters C M and Englert P A (eds) 1997 Elemental and Mineralogical Composition; Cambridge University Press, New York.

    Google Scholar 

  • Pieters C M, Boardman J, Buratti B, Chatterjee A, Clark R, Glavich T, Green R, Head J III, Isaacson P, Malaret E, McCord T, Mustard J, Petro N, Runyon C, Staid M, Sunshine J, Taylor L, Tompkins S, Varanasi P and White M 2009 The Moon Mineralogical Mapper (M3) on Chandrayaan-1; Curr. Sci. 96 500–505.

    Google Scholar 

  • Sato H, Robinson M S, Lawrence S J, Denevi B W, Hapke B, Jolliff B L and Hiesinger H 2017 Lunar Mare TiO2 abundances estimated from UV/Vis reflectance; Icarus 296 216–238.

    Google Scholar 

  • Singer R B 1981 Near-infrared spectral reflectance of mineral mixtures: Systematic combinations of pyroxenes, olivine, and iron oxides; J. Geophys. Res. 86 S7967–S7982.

    Google Scholar 

  • Snyder G A, Lee D C, Taylor L A, Jerde E A and Halliday A N 1992 March Nd and SR Isotopic constraints on high-Ti basalt volcaniosm at Mare Tranquillitatis; Proc. Lunar Planet. Sci. 23.

  • Spudis P D 2005 The geology of multi-ring impact basins: The Moon and other planets; Cambridge University Press.

  • Spudis P D, McGovern P J and Kiefer W S 2011 Large shield volcanoes on the Moon; LPSC 42 Abstract 1367.

  • Spudis P D, McGovern P J and Kiefer W S 2013 Large shield volcanoes on the Moon; J. Geophys. Res.: Planets 118(5) 1063–1081.

  • Staid M I, Pieters C M and Head III J W 1996 Mare Tranquillitatis: Basalt emplacement history and relation to lunar samples; J. Geophys. Res.: Planets 101(E10) 23,213–23,228.

    Google Scholar 

  • Tye A and Head III J W 2013 March Mare Tranquillitatis: Distribution of Mare domes, relation to broad Mare rise, and evidence of a previously unrecognized basin from LOLA altimetric data; In: Proc. Lunar Planet. Sci. XLIV, abstract (Vol. 1319).

  • Wilhelms D E, John F and Trask N J 1987 The geologic history of the Moon; U.S. Geological survey professional paper (No. 1348).

  • Wilcox B B, Lucey P G and Gillis J J 2005 Mapping iron in the lunar Mare: An improved approach; J. Geophys. Res.: Planets 110(E11).

  • Wood C A 2003 The modern Moon: A personal view; Cambridge, MA: Sky Publishing Corporation, pp. 144–151.

    Google Scholar 

  • Zuber M T, Smith D E, Watkins M M, Asmar S W, Konopliv A S, Lemoine F G, Jay Melosh H, Neumann G A, Phillips R J, Solomon S C, Wieczorek M A, Williams J G, Goosens S J, Kruizinga G, Mazarico E, Park R S and Yuan D N 2013 Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission; Science 339(6120) 668–671.

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Indian Space Research Organization (ISRO), India for financial support under the CH-1 AO Research project B.19013/39/2016-sec.2. The authors are also grateful to Satadru Bhattacharya and Mamta Chauhan for their valuable suggestions during the preparation of the manuscript and to the anonymous reviewers for their valuable suggestions, which greatly enhanced this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Bhatt.

Additional information

Communicated by N V Chalapathi Rao

Supplementary materials pertaining to this article are available on the Journal of Earth Science Website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, H., Chauhan, P. & Solanki, P. Compositional mapping and the evolutionary history of Mare Tranquillitatis. J Earth Syst Sci 129, 45 (2020). https://doi.org/10.1007/s12040-019-1302-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1302-7

Keywords

Navigation