Skip to main content
Log in

Revisiting the boundary between the Lower and Upper Vindhyan, Son valley, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The placement of the boundary between the Lower and the Upper Vindhyan in the Son valley, an unconformity, has long been at the centre of a raging debate. At the Bundelkhand sector, it is placed between the Rohtas Limestone and the Sasaram Sandstone (Lower Quartzite). On the other hand, in the Son valley sector, it is placed between the Bhagwar Shale and the Kaimur Formation. The recent study reveals the existence of ca. 12 m thick sandstone between the Bhagwar Shale and Rohtas Limestone, traced over 150 km in the Son valley sector. Based on in-depth facies constituents and facies tracts, this sandstone is an exact equivalent of the Sasaram Sandstone in the Bundelkhand sector. Its base is strongly erosional and limestone and chert clasts derived from the underlying Rohtas Limestone are abundantly present at the basal part of the sandstone and the unconformity between the Upper and Lower Vindhyan are likely to be present in between.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Allen J R L 1988 Reworking of muddy intertidal sediments in the Sevem Estuary, southwestern UK – a preliminary survey; Sedim. Geol. 50 1–23.

    Google Scholar 

  • Auden J B 1933 Vindhyan sedimentation in Son valley, Mirzapur District; Geol. Surv. India Memoir 62 141–250.

    Google Scholar 

  • Banerjee I 1974 Barrier coastline sedimentation model and the Vindhyan example; In: Contribution to earth and planetary sciences (ed.) De A, Quart. J. Geol. Min. Met. Soc. India 62 101–127.

  • Banerjee S, Bhattacharya S K and Sarkar S 2006 Carbon and oxygen compositions of the carbonate facies in the Vindhyan Supergroup, central India; J. Earth Syst. Sci. 115 113–134.

    Google Scholar 

  • Bengtson S, Belivanova V, Rasmussen B and Whitehouse M 2009 The controversial ‘Cambrian’ fossils of the Vindhyan are real but more than a billion years older; Proc. Nat. Acad. Sci. USA 106 7729–7734.

    Google Scholar 

  • Bengston S, Sallstedt T, Belivanova V and Whitehouse M 2017 Three-dimensional preservation of cellular and subcellular structures 1.6 billion-year-old crowd-group red algae; PLoS Biol., https://doi.org/10.1371/journal.pbio.2000735.

    Google Scholar 

  • Bhattacharyya A 1996 Recent advances in Vindhyan geology; Geol. Soc. India, 331p.

    Google Scholar 

  • Bhattacharyya A and Morad S 1993 Proterozoic braided ephemeral fluvial deposits: An example from the Dhandraul sandstone formation of the Kaimur Group, Son Valley, central India; Sedim. Geol. 84 101–114.

    Google Scholar 

  • Bickford M E, Mishra M, Mueller P A, Kamenov G D, Schieber J and Basu A 2017 U–Pb age and Hf Isotopic compositions of magmatic zircons from a rhyolite flow in the Porcellanite formation in the Vindhyan Supergroup, Son Valley (India): Implications for its tectonic significance; J. Geol. 125 367–379.

    Google Scholar 

  • Bose P K and Sarkar S 1991 Basinal autoclastic mass flow regime in the Precambrian Chanda limestone formation, Adilabad, India; Sedim. Geol. 73 299–315.

    Google Scholar 

  • Bose P K and Chakraborty P 1994 Marine to fluvial transition: Proterozoic upper Rewa Sandstone, Maihar, India; Sedim. Geol. 89 285–302.

    Google Scholar 

  • Bose P K, Banerjee S and Sarkar S 1997 Slope-controlled seismic deformation and tectonic framework of deposition: Koldaha Shale, India; Tectonophys. 269 151–169.

    Google Scholar 

  • Bose P K, Chakraborty S and Sarkar S 1999 Recognition of ancient eolian longitudinal dunes; a case study in upper Bhander Sandstone, Son valley, India; Int. J. Sedim. Res. 69 86–95.

    Google Scholar 

  • Bose P K, Sarkar S, Chakrabarty S and Banerjee S 2001 Overview of Meso- to Neoproterozoic evolution of Vindhyan Basin, central India; Sedim. Geol. 141–142 395–419.

    Google Scholar 

  • Bose P K, Sarkar S, Das N G, Banerjee S, Mandal A and Chakraborty N 2015 Proterozoic Vindhyan Basin: Configuration and evolution; In: Precambrian basins of India: Stratigraphic and tectonic context (eds) Mazumder R and Eriksson P G, Geol. Soc. London Memoir 43(1) 85–102.

  • Catuneanu O 2006 Principles of sequence stratigraphy; Elsevier, Amsterdam, 375p.

    Google Scholar 

  • Chakraborty C 1993 Morphology, internal structure and mechanics of small longitudinal (seif) dune in an Aeolian horizon of the Proterozoic Dhandraul Quartzite, India; Sedimentology 40 79–85.

    Google Scholar 

  • Chakraborty C 1995 Gutter casts from the Proterozoic Bijaygarh Shale formation, India: Their implication for storm-induced circulation in shelf settings; Geol. J. 30 69–78.

    Google Scholar 

  • Chakraborty C 2006 Proterozoic intracontinental basin: The Vindhyan example; J. Earth Syst. Sci. 115 3–22.

    Google Scholar 

  • Chakraborty C and Bose P K 1990 Internal structures of sand waves in a tide-storm interactive system: Proterozoic lower quartzite formation, India; Sedim. Geol. 67 133–142.

    Google Scholar 

  • Chakraborty T and Chaudhuri A K 1990 Stratigraphy of Proterozoic Rewa group and palaeogeography of the Vindhyan Basin in central India during Rewa sedimentation; J. Geol. Soc. India 36 383–402.

    Google Scholar 

  • Chakraborty C and Bose P K 1992a Rhythmic shelf storm beds: Proterozoic Kaimur formation, India; Sedim. Geol. 77 259–268.

    Google Scholar 

  • Chakraborty C and Bose P K 1992b Ripple/dune to upper stage plane bed transition: Some observations from the ancient record; Geol. J. 27 349–359.

    Google Scholar 

  • Chakraborty P P, Banerjee S, Das N G, Sarkar S and Bose P K 1996 Volcaniclastics and their sedimentological bearing in Proterozoic Kaimur and Rewa Groups in central India; Mem. Geol. Soc. India 96 59–75.

    Google Scholar 

  • Chakraborty T and Chakraborty C 2001 Eolian-aqueous interactions in the development of a Proterozoic sand sheet: Shikaoda formation, Hosangabad, India; J. Sedim. Res. 71 107–117.

    Google Scholar 

  • Chakraborty P P, Dey S and Mohanty S P 2010 Proterozoic platform sequences of Peninsular India: Implications towards basin evolution and supercontinent assembly; J. Asian Earth Sci. 39 589–607.

    Google Scholar 

  • Chakraborty P P, Sarkar S and Patranabis-Deb S 2012 Tectonics and sedimentation of Proterozoic Basins of Peninsular India; Proc. Indian Nat. Sci. Acad. 78 393–400.

    Google Scholar 

  • Chanda S K and Bhattacharyya A 1982 Vindhyan sedimentation and palaeogrography; post-Auden development; In: Geology of Vindhyachal (eds) Valdiya K S, Bhatia S B and Gaur V K, Hind. Publ. Corp. (India), Delhi, pp. 88–101.

  • Cowan C A and James N P 1992 Diastasis cracks: Mechanically generated synaeresis-like cracks in upper Cambrian shallow water oolite and ribbon carbonates; Sedimentology 39 1101–1118.

    Google Scholar 

  • De Boer P L, Oost A P and Visser M J 1989 The diurnal inequality of the tide as parameter for recognizing tidal influences; J. Sediment. Res. 59 912–921.

    Google Scholar 

  • Eriksson K A and Simpson E L 2004 Precambrian tidalites: Recognition and significance; In: Tempos and events in Precambrian time: Amsterdam (ed.) Eriksson P G, Elsevier Science, pp. 631–642.

  • Gilleaudeau G J, Sahoo S P, Kah L C, Henderson M A and Kaufman J 2018 Proterozoic carbonates of the Vindhyan Basin, India: Chemostratigraphy and diagenesis; Gondwana Res. 57 10–25.

    Google Scholar 

  • Gopalan K, Kumar A, Kumar S and Vijayagopal B 2013 Depositional history of the upper Vindhyan succession, central India: Time constraints from Pb–Pb isochron ages of its carbonate components; Precamb. Res. 233 108–117.

    Google Scholar 

  • Harazim D, Callow R H and McIlroy D 2013 Microbial mats implicated in the generation of intrastratal shrinkage (‘synaeresis’) cracks.; Sedimentology 60 1621–1638.

    Google Scholar 

  • Kidder D L 1990 Facies-controlled shrinkage-crack assemblages in middle Proterozoic mudstones from Montana, USA; Sedimentology 37 943–951.

    Google Scholar 

  • Kneller B C and Branney M J 1995 Sustained high-density turbidity currents and the deposition of thick massive sands; Sedimentalogy 42 607–616.

    Google Scholar 

  • Kohsiek L H M and Terwindt I H I 1981 Characteristics of foreset and topset bedding in megaripples related to hydrodynamic conditions on an intertidal shoal; In: Holocene marine sedimentation in the North Sea basin (eds) Nio S D, Schllttenhelm R L E and Van Weering T J C E, IAS Spec. Publ. 5 27–37.

  • Kolodny Y, Taraboulos A and Frieslander U 1980 Participation of fresh water in chert diagenesis: Evidence from oxygen isotopes and boron a-track mapping; Sedimentology 27 305–316.

    Google Scholar 

  • Kumar S 1978a Stromatolites and environment of deposition of the Vindhyan Supergroup of Central India; J. Palaeontol. Soc. India 21–22 33–43.

    Google Scholar 

  • Kumar S 1978b Sedimentaries of the zone of Badolisera and the Vindhyan Supergroup, Uttar Pradesh – A reappraisal of correlation; J. Palaeontol. Soc. India 21–22 96–101.

    Google Scholar 

  • Kumar S and Sharma M 2011 Vindhyan Basin, Son Valley Area, central India; The Palaeol. Soc. of India, Field Guide, 121p.

    Google Scholar 

  • Magalhães A J C, Gabaglia G P, Scherer C M S, Ballico M B, Guadagnia F, Bento Freeire E, Silva Born L R and Octavian C 2015 Sequence hierarchy in a Mesoproterozoic interior sag basin: From basin fill to reservoir scale, the Tombador formation, Chapada Diamantina Basin, Brazil; Basin Res. 28 393–342.

    Google Scholar 

  • Malone S J, Meert J G, Banerjee D M, Pandit M K, Tamrat E, Kamevon G D, Pradhan V R and Sohl L E 2008 Paleomagnetism and detrital zircon geochronology of the upper Vindhyan sequence, Son valley and Rajasthan, India: A ca. 1000 Ma closure age for the Puranabasin? Precamb. Res. 164 137–159.

    Google Scholar 

  • Mandal A, Koner A, Sarkar S, Tawfik H A, Chakraborty N, Bhakta S and Bose P K 2016 Physico-chemical tuning of palaeogeographic shifts: Bhuj formation, Kutch, India; Mar. Pet. Geol. 78 474–492.

    Google Scholar 

  • McCave I N 1985 Recent shelf elastic sediments; In: Sedimentology: Recent developments and applied aspects (eds) Brenchley P J and Williams B P S, Geol. Soc. of London, Spec. Publ. 18 49–65.

  • McMahon S, Hood A V S and McIlroy D 2017 The origin and occurrence of subaqueous sedimentary cracks; In: Earth system evolution and early life: A celebration of the work of Martin Brasier (eds) Brasier A T, McIlroy D and McLoughlin N, Geol. Soc. London, Spec. Publ. 448 285–309.

    Google Scholar 

  • McMenamin D S, Kumar S and Awramik S M 1983 Microbial fossils from the Kheinjua Formation, Middle Proterozoic Semri Group (lower Vindhyan) Son valley area, Central India; Precamb. Res. 21 247–271.

    Google Scholar 

  • Mishra M, Bickford M E and Basu A 2018 U-Pb Age and chemical composition of an Ash Bed in the Chopan Porcellanite Formation, Vindhyan Supergroup, India; J. Geol. 126(5) 553–560.

    Google Scholar 

  • Naqvi S M and Rogers J J W 1987 Precambrian geology of India; Clarendon Press; Oxford Univ. Press, New York, Oxford, 233p.

    Google Scholar 

  • Nio S D and Yang C S 1991 Diagnostic attributes of clastic tidal deposits: A review; In: Clastic tidal sedimentology: Calgary (eds) Smith D G, Zaitlin B A, Reinson G E and Rahmani R A, Can. Soc. Pet. Geol., pp. 3–27.

  • Paikaray S, Banerjee S and Mukherji S 2008 Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance tectonics and paleoweathering; J. Asian Earth Sci. 32 34–48.

    Google Scholar 

  • Pati J K, Reimold W U, Koeberl C and Pati P 2008 The Dhala structure, Bundhelkhand craton, central India-eroded remnant of large Paleoproterozoic impact structure; Meteor. Planet. Sci. 43(8) 1383–1398.

    Google Scholar 

  • Prasad B and Verma K K 1991 Vindhyam basin: A review; In: Sedimetary basin of India: Tectonics context (eds) Tandon S K, Pant C C and Casshyap S M, Gyanodaya Prakashan, Nainital, India, pp. 50–62.

    Google Scholar 

  • Pratt B R 2002 Syneresis cracks: Subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering; Sedim. Geol. 117(1) 1–10.

    Google Scholar 

  • Rai V, Shukla M and Gautam R 1997 Discovery of carbonaceous megafossils (Chauria–Tawuiaassenblagge) from the Neoproterozoic Vindhyan succession (Rewa Group), Allahabad–Rewa area, India; Curr. Sci. 73 783–788.

    Google Scholar 

  • Rao K S and Neelakantam S 1978 Stratigraphy and sedimentation of Vindhyans in parts of Son valley area, Madhya Pradesh; Rec. Geol. Surv. India 110 180–193.

    Google Scholar 

  • Rasmussen B, Bose P K, Sarkar S, Banerjee S, Fletcher I R and Mcnaughton N J 2002 1.6 ga U–Pb zircon age for the Chorhat Sandstone, lower Vindhyan, India: Possible implications for early evolution of animals; Geology 30 103–106.

    Google Scholar 

  • Ray J S, Martin M W, Veizer J and Bowring S A 2002 U–Pb zircon dating and Sr isotope systematic of Vindhyan Supergroup, India; Geology 30 131–134.

    Google Scholar 

  • Ray J S, Veizer J and Davis W J 2003 C, O, Sr and Pb isotope systematic of carbonate sequences of the Vindhyan Supergroup, India: Age, diagenesis, correlations and implication for global events; Precamb. Res. 121 103–140.

    Google Scholar 

  • Raza M, Dayal A M, Khan A, Bhardwaj V R and Rais S 2010 Geochemistry of lower Vindhyan clastic sedimentary rocks of northwestern Indian shield: Implications for composition and weathering history of Proterozoic continental crust; J. Asian Earth Sci. 39 51–61.

    Google Scholar 

  • Rouse R 1961 Fluid mechanics for hydralic engineers; Dover, New York.

    Google Scholar 

  • Sallstedt T, Bengtson S, Broman C, Crill P M and Canfield D E 2018 Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India; Geobiology 16 139–159.

    Google Scholar 

  • Sarangi S, Gopalan K and Kumar S 2004 Pb–Pb of earliest magascopic, eukaryotic alga bearing Rohtas formation, Vindhyan Supergroup, India: Implication for Precambrian atmospheric oxygen evolution; Precamb. Res. 132 107–121.

    Google Scholar 

  • Sarkar S, Chakraborty P P and Bose P K 1996 Proterozoic lakheri limestone, central India; facies, paleogeography and physiography; Mem. Geol. Soc. India 36 5–26.

    Google Scholar 

  • Sarkar S, Banerjee S, Chakarborty S and Bose P K 2002a Shelf storm flow dynamics: Insight from the Mesoproterozoic Rampur Shale, Central India; Sedim. Geol. 147 89–104.

    Google Scholar 

  • Sarkar S, Chakarborty S, Banerjee S and Bose P K 2002b Facies sequence and cryptic imprint of sag tectonics in the late Proterozoic Sirbu Shale, Central Shale; IAS Spec. Publ. 33 369–381.

    Google Scholar 

  • Sarkar S, Eriksson P G and Chakraborty S 2004 Epeiric sea formation on Neoproterozoic supercontinent break-up: A distinctive signature in coastal storm bed amalgamation; Gondwana Res. 7(2) 313–322.

    Google Scholar 

  • Sarkar S, Banerjee S, Samanta P and Jeevankumar S 2006 Microbial mat‐induced sedimentary structures in siliciclastic sediments: Examples from the 1.6 Ga Chorhat Sandstone, Vindhyan Supergroup, MP, India; J. Earth Syst. Sci. 115 49–60.

    Google Scholar 

  • Sarkar S, Banerjee S, Mukhopadhyay S and Bose P K 2012 Stratigraphic architecture of the Sonia Fluvial interval, India in its Precambrian context; Precamb. Res. 214–215 210–226.

    Google Scholar 

  • Sarkar S, Banerjee S, Samanta P, Chakraborty N, Chakraborty P P, Mukhopadhyay S and Singh A K 2014 Microbial mat records in siliciclastic rocks: Examples from four Indian Proterozoic basins and their modern equivalents in Gulf of Cambay; J. Asian Earth Sci. 91 362–377.

    Google Scholar 

  • Sarkar S, Choudhuri A, Mandal S and Bose P K 2018 Flat pebbles and their edge‐wise fabric in relation to 2-D microbial mat; Geol. J., https://doi.org/10.1002/gj.3312.

    Google Scholar 

  • Sastry M V A and Moitra A K 1984 Vindhyan stratigraphy: A review; Geol. Surv. India Memoir 116 109–148.

    Google Scholar 

  • Schieber J 1986 The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Mid-Proterozoic basins; Sedimentology 33 521–536.

    Google Scholar 

  • Schieber J, Sur S and Banerjee S 2007 Benthic microbial mats in black shale units from Vindhyan supergroup, Middle Proterozoic of India: The challenges of recognizing the genuine article; In: Atlas of microbial mats features preserved within the clastic rock record (eds) Schieber J, Bose P K, Eriksson P G, Banerjee S, Sarkar S, Altermann W and Catunneau O, Elsevier, pp. 189–197.

    Google Scholar 

  • Seilacher A, Bose P K and Pflüger F 1998 Triploblastic animals more than 1 billion years ago: Trace fossil evidence from India; Science 282 80–82.

    Google Scholar 

  • Singh L B 1973 Depositional environment of the Vindhyan sediments in the Son valley area; In: Recent Researches in Geology Hindu. Pub. Corp., New Delhi, pp. 146–152.

    Google Scholar 

  • Srivastava A P and Rajagopalan G 1988 F–T ages of Vindhyan glauconitic sandstone beds exposed around Rawatbhata area, Rajasthan; J. Geol. Soc. India 32 527–529.

    Google Scholar 

  • Tripathy G S and Singh S K 2015 Re–Os depositional age for black shale from the Kaimur Group, upper Vindhyan, India; Chem. Geol. 413 63–72.

    Google Scholar 

  • Valdiya K S 2010 The Making of India Geodynamics Evolution; pp. 191–193.

  • Visser M J 1980 Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: A preliminary note; Geology 8 543–546.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the infrastructure support provided by their host institutes. SM acknowledges the UGC; AC, the DST Inspire Faculty programme; IM, the CSIR for providing a research grant and SS, the CAS (Phase VI), Department of Geological Sciences, JU for funding the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Sarkar.

Additional information

Communicated by N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Choudhuri, A., Mondal, I. et al. Revisiting the boundary between the Lower and Upper Vindhyan, Son valley, India. J Earth Syst Sci 128, 222 (2019). https://doi.org/10.1007/s12040-019-1250-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1250-2

Keywords

Navigation