Skip to main content

Advertisement

Log in

Seasonal contrast in the vertical profiles of aerosol number concentrations and size distributions over India: Implications from RAWEX aircraft campaign

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Aircraft measurements of the vertical profiles of aerosol total number concentrations and size distributions (in the size range of 0.5–20 μm) were made over seven geographically diverse locations of the Indian mainland during two contrasting seasons, winter (December 2012) and spring (April–May 2013), as a part of the regional aerosol warming experiment (RAWEX). Our observations revealed an increase in the vertical extent of aerosol loading during spring having a significant enhancement in coarse mode aerosols in the lower free-troposphere (FT) over western and central parts of India and the Indo-Gangetic plains (IGP). The particulate depolarisation ratio (PDR) derived from the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) over the same region showed the presence of dust (including polluted dust) at higher altitudes in spring. Concurrent and collocated measurements of aerosol scattering and absorption properties aboard the aircraft revealed that the FT enhancement in coarse mode aerosol loading during spring is associated with a decrease in single scattering albedo and an increase in columnar absorption aerosol optical depth. This confirms that the elevated layers of coarse mode aerosols seen during spring are absorbing in nature, especially over the IGP. The presence of such coarse-mode absorbing aerosols plays a crucial role in governing the radiation balance over the IGP in spring through the diabatic heating of the upper atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

References

  • Anderson T L and Ogren J A 1998 Determining aerosol radiative properties using the TSI 3563 integrating nephelometer; Aerosol Sci. Technol. 29 57–69.

    Google Scholar 

  • Arnott W P, Hamasha K, Moosmuller H, Sheridan P J and Ogren J A 2005 Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer; Aerosol Sci. Technol. 39(1) 17–29.

    Google Scholar 

  • Babu S S, Moorthy K K and Satheesh S K 2006 Temporal heterogeneity in aerosol characteristics at a tropical coastal station and the resulting radiative impacts; In: Remote Sensing of the Atmosphere and Clouds Proceedings of SPIE vol. 6408, pp. 640813.

  • Babu S S et al. 2013 Trends in aerosol optical depth over Indian region: Potential causes and impact indicators; J. Geophys. Res. Atmos. 118, https://doi.org/10.1002/2013jd020507.

    Google Scholar 

  • Babu S S, Nair V S, Gogoi M M and Moorthy K K 2016 Seasonal variation of vertical distribution of aerosol single scattering albedo over Indian sub-continent: RAWEX aircraft observations; Atmos. Environ. 125 312–323.

    Google Scholar 

  • Barman S C et al. 2017 Assessment of ambient air quality in Lucknow city, CSIR-Indian Institute of Toxicology Research, Lucknow, 2017.

    Google Scholar 

  • Beegum N, Moorthy K K, Babu S S, Satheesh S K, Vinoj V, Badarinath K V S, Safai P D, Devara P C S, Singh S, Vinod, Dumka U C and Pant P 2009 Spatial distribution of aerosol black carbon over India during pre-monsoon season; Atmos. Environ. 43 1071–1078.

    Google Scholar 

  • Census 2011 Primary census abstracts, Registrar general of India, Ministry of Home Affairs, Government of India, http://www.censusindia.gov.in/pca/Searchdata.aspx.

  • Dubovik O and Li Z et al. 2018 Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives; J. Quant. Spectrosc. Radiat. Transfer 224 474–511.

    Google Scholar 

  • Freudenthaler V, Esselborn M, Wiegner M, Heese B, Tesche M, Ansmann A, Müller D, Althausen D, Wirth M, Fix A, Ehret G, Knippertz P, Toledano C, Gasteiger J, Garhammer M and Seefeldner M 2009 Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006; Tellus B 61 16579.

    Google Scholar 

  • Gautam R, Hsu N C and Lau K M 2010 Pre-monsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: Implications for regional climate warming; J. Geophys. Res. 115(D17) 1984–2012.

    Google Scholar 

  • Gautam R, Hsu N C, Tsay S C, Lau K M, Holben B, Bell S, Smirnov A, Li C, Hansell R, Ji Q, Payra S, Aryal D, Kayastha R and Kim K M 2011 Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: Distribution, properties and radiative effects during the 2009 pre-monsoon season; Atmos. Chem. Phys. 11(24) 12841–12863.

    Google Scholar 

  • Ghosh S, Gupta T, Rastogi N, Gaur A, Misra A, Tripathi S N, Paul D, Tare V, Prakash O, Bhattu D, Dwivedi A K, Kaul D S, Dalai R and Mishra S K 2014 Chemical characterization of summertime dust events at kanpur: Insight into the sources and level of mixing with anthropogenic emissions; Aerosol Air Qual. Res. 14 879–891.

    Google Scholar 

  • Giglio L, Descloitres J, Justice C O and Kaufman Y 2003 An enhanced contextual fire detection algorithm for MODIS; Remote Sens. Environ. 87 273–282. https://doi.org/10.1016/s0034-4257(03)00184-6.

    Article  Google Scholar 

  • Gogoi M M, Moorthy K K, Babu S S and Bhuyan P K 2009 Climatology of columnar aerosol properties and the influence of synoptic conditions: First-time results from the northeastern region of India; J. Geophys. Res. 114(D8) 1984–2012.

    Google Scholar 

  • Gogoi M M, Pathak N, Moorthy K K, Bhuyan P K, Babu S S, Bhuyan K and Kalita G 2011 Multi-year investigations of near surface and columnar aerosols over Dibrugarh, northeastern location of India: Heterogeneity in source impacts; Atmos. Env. 45 1714–1724.

    Google Scholar 

  • Gogoi M M, Babu S S, Moorthy K K, Manoj M R and Chaubey J P 2013 Absorption characteristics of aerosols over the northwestern region of India: Distinct seasonal signatures of biomass burning aerosols and mineral dust; Atmos. Environ. 73 92–102.

    Google Scholar 

  • Gogoi M M, Moorthy K K, Kompalli S K, Chaubey J P, Babu S S, Manoj M R, Nair V S and Prabhu T P 2014 Physical and optical properties of aerosols in a free tropospheric environment: Results from long-term observations over western trans-Himalayas; Atmos. Environ. 84 262–274.

    Google Scholar 

  • Huebert B J, Howell S G, Covert D S, Bertram T, Clarke A D, Anderson J R, Lafleur B G, Seebaugh W R, Wilson J C, Gesler D, Blomquist B W and Fox J 2004 PELTI: Measuring the passing efficiency of an airborne low turbulence aerosol inlet; Aerosol Sci. Technol. 38 803–826.

    Google Scholar 

  • Junge CE 1963 Air chemistry and radioactivity; Academic Press, New York, pp. Xii, 382.

    Google Scholar 

  • Kompalli S K, Babu S S, Moorthy K K, Manoj M R, Kiran Kumar N V P, Hareef Baba Shaeb K and Joshi A K 2014 Aerosol black carbon characteristics over central India: Temporal variation and its dependence on mixed layer height; Atmos. Res. 147–148 27–37.

    Google Scholar 

  • Lau K M, Kim M K and Kim K M 2006 Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau; Clim. Dyn. 26(78) 855–864.

    Google Scholar 

  • Lawrence M G and Lelieveld J 2010 Atmospheric pollutant outflow from southern Asia: A review; Atmos. Chem. Phys. 10(22) 11017–11096.

    Google Scholar 

  • Lelieveld J, Berresheim H, Borrmann S, Crutzen P J, Dentener F J, Fischer H, Feichter J, Flatau P J, Heland J, Holzinger R, Korrmann R, Lawrence M G, Levin Z, Markowicz K M, Mihalopoulos N, Minikin A, Ramanathan V, De Reus M, Roelofs G J, Scheeren H A, Sciare J, Schlager H, Schultz M, Siegmund P, Steil B, Stephanou EG, Stier P, Traub M, Warneke C, Williams J and Ziereis H 2002 Global air pollution crossroads over the Mediterranean; Science 298(5594) 794–799.

    Google Scholar 

  • Li W J and Shao L Y 2009 Transmission electron microscopy study of aerosol particles from the brown hazes in northern China; J. Geophys. Res. 114 D09302.

    Google Scholar 

  • Mamouri R E and Ansmann A 2014 Fine and coarse dust separation with polarization lidar; Atmos. Meas. Tech. 7 3717–3735.

    Google Scholar 

  • Mc Naughton C S, Clarke A D, Howell S G, Pinkerton M, Anderson B, Thornhill L, Hudgins C, Winstead E, Dibb J E, Scheuer E and Maring H 2007 Results from the DC-8 inlet characterization experiment DICE): Airborne versus surface sampling of mineral dust and sea salt aerosols; Aerosol Sci. Technol. 41 136–159.

    Google Scholar 

  • Mishra A K and Shibata T 2012a Climatological aspects of seasonal variation of aerosol vertical distribution over central Indo-Gangetic belt (IGB) inferred by the space-borne lidar CALIOP; Atmos. Environ. 46 365–375.

    Google Scholar 

  • Mishra A K and Shibata T 2012b Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB); Atmos. Environ. 57 205–218.

    Google Scholar 

  • Mönkkönen P, Koponen I, Lehtinen K, Hämeri K, Uma and Kulmala M 2005 Measurements in a highly polluted Asian mega city: Observations of aerosol number size distributions, modal parameters and nucleation events; Atmos. Chem. Phys. 5 57–66.

    Google Scholar 

  • Moorthy K K and Satheesh S K 2000 Characteristics of aerosols over a remote island, Minicoy in the Arabian Sea: Optical properties and retrieved size characteristics; Quart. J. Roy. Meteorol. Soc. 126 81–109.

    Google Scholar 

  • Moorthy K K, Babu S S and Satheesh S K 2007 Temporal heterogeneity in aerosol characteristics and the resulting radiative impact at a tropical coastal station – Part 1: Microphysical and optical properties; Ann. Geophys. 25 2293–2308.

    Google Scholar 

  • Moorthy K K, Babu S S, Manoj M R and Satheesh S K 2013 Buildup of aerosols over the Indian region; Geophys. Res. Lett. 40(5) 1011–1014.

    Google Scholar 

  • Nair V S, Moorthy K K, Alappattu D P, Kunhikrishnan P K, George S, Nair P R, Babu S S, Abish B, Satheesh S K, Tripathi S N, Niranjan K, Madhavan B L, Srikant V, Dutt C B S, Badarinath K V S and Reddy R R 2007 Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport; J. Geophys. Res. 112(D13) D13205.

    Google Scholar 

  • Nair V S, Babu S S, Gogoi M M and Moorthy K K 2016 Large-scale enhancement in aerosol absorption in the lower free troposphere over continental India during pre-monsoon; Geophys. Res. Lett. 43 11453–11461, https://doi.org/10.1002/2016gl070669.

    Article  Google Scholar 

  • Pillai P S and Moorthy K K 2001 Aerosol mass-size distributions at a tropical coastal environment: Response to mesoscale and synoptic processes; Atmos. Environ. 35 4099–4112.

    Google Scholar 

  • Pósfai M, Axisa D, Tompa É, Freney E, Bruintjes R and Buseck P R 2013 Interactions of mineral dust with pollution and clouds: An individual-particle TEM study of atmospheric aerosol from Saudi Arabia; Atmos. Res. 122 347–361.

    Google Scholar 

  • Prospero J M, Charlson R J, Mohnen V, Jaenicke R, Delany A C, Meyers J, Zoller W and Rahn K 1983 The atmospheric aerosol system: An overview; Rev. Geophys. Space Phys. 21 1607–1629.

    Google Scholar 

  • Reddy R R, Gopal K R, Narasimhulu K, Reddy L S S and Kumar K R 2007 Aerosol Size Distribution Variation in Anantapur (14.62°N, 77.65°E) Semi Arid Zone and its Impact on Aerosol Effective Radius; Aerosol and Air Quality Res. 7(4) 550–562.

    Google Scholar 

  • Satheesh S K, Ramanathan V, Holben B N, Moorthy K K, Loeb N G, Maring H, Prospero J M and Savoie D 2002 Chemical, microphysical, and radiative effects of Indian Ocean aerosols; J. Geophys. Res. 107(D23) 4725.

    Google Scholar 

  • Satheesh S K, Moorthy K K, Babu S S, Vinoj V and Dutt C B S 2008 Climate implications of large warming by elevated aerosol over India; Geophys. Res. Lett. 35(19) L19809.

    Google Scholar 

  • Sullivan R C and Prather K A 2007 Investigations of the diurnal cycle and mixing state of oxalic acid in individual particles in Asian aerosol outflow; Environ. Sci. Technol. 41(23) 8062–8069.

    Google Scholar 

  • Tesche M, Ansmann A, Müller D, Althausen D, Engelmann R, Freudenthaler V and Groß S 2009 Vertically resolved separation of dust and smoke over Cape Verde using multi-wavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008; J. Geophys. Res. 114 D13202.

    Google Scholar 

  • Vanderpool R W and Rubow K L 1988 Generation of large, solid, monodisperse calibration aerosols; Aerosol Sci. Tech. 9 65–69.

    Google Scholar 

  • Verma S, Boucher O, Shekar Reddy M, Upadhyaya H C, Le Van P, Binkowski F S and Sharma O P 2012 Tropospheric distribution of sulphate aerosols mass and number concentration during INDOEX-IFP and its transport over the Indian Ocean: A GCM study; Atmos. Chem. Phys. 12(14) 6185–6196.

    Google Scholar 

  • Volckens J and Peters T M 2005 Counting and particle transmission efficiency of the aerodynamic particle sizer; J. Aerosol Sci. 36(12) 1400–1408.

    Google Scholar 

  • Winker D M, Hunt W H and McGill M J 2007 Initial performance assessment of CALIOP; Geophys. Res. Lett. 34(19) L19803.

    Google Scholar 

  • Yang E S, Gupta P and Christopher S A 2009a Net radiative effect of dust aerosols from satellite measurements over Sahara; Geophys. Res. Lett. 36(18) L18812.

    Google Scholar 

  • Yang M, Howell S G, Zhuang J and Huebert B J 2009b Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China–interpretations of atmospheric measurements during EAST-AIRE; Atmos. Chem. Phys. 9(6) 2035–2050.

    Google Scholar 

Download references

Acknowledgements

This study was carried out as part of the Regional Aerosol Warming Experiment (RAWEX) under the Aerosols and Radiative Forcing over India (ARFI) project of ISRO-Geosphere Biosphere Programme (ISRO-GBP). We acknowledge the National Remote Sensing Centre (NRSC), Hyderabad for the support with the aircraft operation and measurements. S. Suresh Babu acknowledges the Department of Science Technology for the Swarna Jayanti Fellowship. We also acknowledge NOAA Air Resources Laboratory for the provision of the HYSPLIT transport and dispersion model and READY website (http://www.arl.noaa.gov/ready.html) used in this publication. The CALIPSO data were obtained from the NASA Langley Research Centre and Atmospheric Sciences Data Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukunda M Gogoi.

Additional information

Communicated by Amit Kumar Patra

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, M.M., Lakshmi, N.B., Nair, V.S. et al. Seasonal contrast in the vertical profiles of aerosol number concentrations and size distributions over India: Implications from RAWEX aircraft campaign. J Earth Syst Sci 128, 225 (2019). https://doi.org/10.1007/s12040-019-1246-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1246-y

Keywords

Navigation