Skip to main content

Advertisement

Log in

An assessment of geomorphometric anomalies and their significance on the seismotectonic activity through geoinformatics

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The natural system of the drainage basin is interrupted by sub-surface faults and active tectonic processes. The anomalous nature of the drainage network and its basic morphological characteristics produce significant geomorphometric anomalies of the drainage basins which are an indicator of seismotectonic activity. In recent years, the increasing frequency of earthquakes and the subsequent damage in the Indian sub-continent necessitates a study of the seismotectonic significance with special reference to morphometric analysis. Hence, the present research is focused on studying the geomorphometric anomalies at a micro basin level and their impact on seismotectonic activity using geoinformatics. The study area is the lower Tista sub-basin which belongs to the Himalayan mountain in the northern part, whereas the southern part represents a peneplain surface. The quantitative databases of various morphometric parameters have been generated using digital elevation model data and satellite images to identify the geomorphic anomalies at the micro basin level which have been compared with past seismological databases to understand the impact on seismotectonic activity. The result shows that the drainage bifurcation, anomalous drainage network, drainage compression along the mountain front, narrow steep valleys in the high resistance surface, neotectonic deformation and the asymmetric valley shape are probable geomorphometric anomalies which coincide with past seismic activity in the study region. The present study also shows that the tectonic tilt, compressed meanders in the uplifted surface and the linear valley in the alluvial surface are also equivalently significant for past earthquake occurrences in the foothill zone. It is also observed that the elongated and linear micro basins and the presence of a strike–slip fault with major lineaments in the Quaternary surface are great indicators of geomorphometric anomalies which have no resemblance with any significant earthquake in the past and are equally important signatures of seismotectonic activity. The study concludes that the geomorphometric anomaly is an important parameter of seismotectonic activity which can be used for studying seismic hazards in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abrahams A D 1984 Channel networks: A geomorphological perspective; Water Resour. Res. 20 161–168.

    Google Scholar 

  • Altin T B 2012 Geomorphic signatures of active tectonic in drainage basins in the southern Bolkar mountain Turkey; J. Indian Soc. Remote Sens. 40(2) 271–285.

    Article  Google Scholar 

  • Anbazhagan P and Sitharam T G 2008 Seismic microzonation of Bangalore, India; J. Earth Syst. Sci. 117 833–852.

    Article  Google Scholar 

  • Asthana A K L, Gupta A K, Luirei K, Bartarya S K, Rai S K and Tiwari S K 2015 A quantitative analysis of the Ramganga drainage basin and structural control on drainage pattern in the fault zones, Uttarakhand; J. Geol. 86 9–22.

    Article  Google Scholar 

  • Avena G C, Giuliano G and Lupia Palmieri E 1967 Sulla valutazione quantitativa della gerarchizzazione ed evoluzione dei reticoli fluviali; Boll. Soc. Geol. Ital. 86 781–796.

  • Bahrami S 2013 Analyzing the drainage system anomaly of Zagros basins: Implications for active tectonics; Tectonophys. 608 914–928.

    Article  Google Scholar 

  • Bali R, Agrawal K K and Ali S N 2012 Drainage morphometry of Himalayan Glacio-fluvial basin, India: Hydrologic and neotectonic implication; Environ. Earth Sci. 66(4) 1163–1174.

    Article  Google Scholar 

  • Bansal B K and Nath S K 2011 Seismic microzonation handbook; Geoscience divisions, Ministry of Earth Sciences, Government of India, New Delhi.

    Google Scholar 

  • Bansal B K and Vandana C 2007 Microzonation studies in India: DST initiatives; In: Proceedings of workshop on Microzonation, Indian Institute of Science, Bangalore, pp. 1–6.

  • Barbera P L and Rosso R 1989 On the fractal dimension of stream network; Water Resour. Res. 25(4) 735–741.

    Article  Google Scholar 

  • Bhatt C M, Litoria P K and Sharma P K 2008 Geomorphic signatures of active tectonics in Bist Doab interfluvial tract of Punjab, NW India; J. Indian Soc. Remote Sens. 36 361–373.

    Article  Google Scholar 

  • Bhatta B 2008 Remote sensing and GIS; Oxford University Press, New Delhi.

    Google Scholar 

  • Bhattacharya F, Rastogi B K and Kothyai G C 2013 Morphometric evidence of seismicity around Wagad and Gedi faults, eastern Kachchh, Gujarat; J. Geol. 81 113–121.

    Google Scholar 

  • Bishop P 2007 Long-term landscape evolution: Linking tectonics and surface processes; Earth Surf. Proc. Land. 32 329–365.

    Article  Google Scholar 

  • Bull W B and McFadden L D 1977 Tectonic geomorphology north and south of the Garlock fault, California; In: Geomorphology in arid regions, Proceedings at the eighth annual geomorphology symposium (ed.) Doehering D O, State University of New York, Binghamton, NY, pp. 115–138.

    Google Scholar 

  • Chorley R J 1969 The drainage basin as the fundamental geomorphic unit; In: Water, earth and man (ed.) Chorley R J, Methuen and Co Ltd., London, 588p.

  • Ciccacci S, Fredi P, Lupia Palmieri E and Pugliese F 1980 Contributo dell’analisi geomorfica quantitativa alla valutazione dell’entitàdell’erosione nei bacini fluviali; Boll. Soc. Geol. Ital. 99 455–516.

    Google Scholar 

  • Clarke J I 1970 Morphometry from maps; In: Essays in geomorphology dury (ed.) Heineman G H, Elsevier Publ. Co., London, pp. 235–274.

    Google Scholar 

  • Cox R T 1994 Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible quaternary tilt-block tectonics: An example from the Mississippi embayment; Geol. Soc. Am. Bull. 106(5) 571–581.

    Article  Google Scholar 

  • Cuong N Q and Zuchiewicz W A 2001 Morphotectonic properties of the Lo river fault near Tam Dao in north Vietnam; Nat. Hazards Earth Syst. Sci. 1 15–22.

    Article  Google Scholar 

  • Dasgupta S, Mukhopadhyay M and Nandy D R 1987 Active transverse features in the central portions of the Himalaya; Tectonophys. 136 255–264.

    Article  Google Scholar 

  • Dasgupta S, Pande P, Ganguly D, Iqbal Z, Sanyal K, Venkataraman N V, Sural B, Harendranath L, Mazumdar K, Sanyal S, Roy A, Das L K, Misra P S and Gupta H K 2000 Seismotectonic atlas of India and its environs (eds) Narula P L, Acharyya S K and Banerjee J, Special Publication Geological Survey of India, Calcutta, 86p.

  • Dasgupta S, Mukhopadhyay B, Mukhopadhyay M and Nandy D R 2013 Role of transverse tectonics in the Himalayan collision: Further evidences from two contemporary earthquakes; J. Geol. 81 241–247.

    Google Scholar 

  • Deffontaines B and Chorowicz J 1991 Principles of drainage basin analysis from multisource data: Application to the structural analysis of the Zaire Basin; Tectonophys. 194(3) 237–263.

    Article  Google Scholar 

  • Dombradi E, Timar G, Bada G, Cloetingh S and Frank Horvath F 2007 Fractal dimension estimations of drainage network in the Carpathian–Pannonian system; Global Planet Change 58 197–213.

    Article  Google Scholar 

  • Duarah B P and Phukan S 2011 Seismic hazard assessment in the Jia Bhareli river catchment in eastern Himalaya from SRTM-derived basin parameters, India; Nat. Hazards 59 367–381.

    Article  Google Scholar 

  • El Hamdouni R, Irigaray C, Fernandez T, Chacon J and Keller E A 2008 Assessment of relative active tectonics, southwest border of Sierra Nevada (southern Spain); Geomorphology 96 150–173.

    Article  Google Scholar 

  • Ferry M, Meghraoui M, AbouKaraki N, Al-Taj M, Amoush H, Al-Dhaisat S and Barjous M 2007 A 48-kyr-long slip rate history for the Jordan Valley segment of the Dead Sea Fault; Earth Planet. Sci. Lett. 260 394–406.

    Google Scholar 

  • Gioia D, Martino C and Schiattarella M 2011 Long- to short-term denudation rates in the southern Apennines: Geomorphological markers and chronological constraints; Geol. Carpathica 62 27–41.

    Article  Google Scholar 

  • Grujic D, Hollister L S and Parrish R R 2002 Himalayan metamorphic sequence as an orogenic channel: Insight from Bhutan; Earth Planet Sci. Lett. 198 177–191.

    Google Scholar 

  • Hack J T 1973 Stream profile analysis and stream-gradient index; J. Res. US Geol. Surv. 1 421–429.

    Google Scholar 

  • Hare P H and Gardner T W 1985 Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica; In: Tectonic geomorphology (eds) Morisawa M and Hack J T, Allen and Unwin, Boston, pp. 75–104.

    Google Scholar 

  • Hassen M B, Deffontaines B and Turki M M 2014 Recent tectonic activity of the Gafsa fault through morphometric analysis: Southern atlas of Tunisia; Quat. Int. 338 99–112.

    Article  Google Scholar 

  • Horton R E 1932 Drainage basin characteristics; Trans. Am. Geophys. Union 13 350–361.

    Article  Google Scholar 

  • Horton R E 1945 Erosional development of streams and their drainage basins; Bull. Geol. Soc. Am. 56 275–370.

    Article  Google Scholar 

  • Howard A D 1967 Drainage analysis in geologic interpretation: A summation; Am. Assoc. Petrol. Geol. Bull. 51 2246–3428.

    Google Scholar 

  • John B and Rajendran C P 2008 Geomorphic indicators of neotectonism from the precambrian terrain of peninsular India: A study from the Bharathapuzha basin, Kerala; J. Geol. 71 827–840.

    Google Scholar 

  • Kaliraj S, Chandrasekar N and Magesh S 2015 Morphometric analysis of the river Thamirabarani sub-basin in Kanya-kumari district, south west coast of Tamil Nadu, India, using remote sensing and GIS; Environ. Earth Sci. 73 7375–7401.

    Article  Google Scholar 

  • Keller E A and Pinter N 2002 Active tectonics. Earthquakes, uplift, and landscape; Prentice Hall, New Jersey,break 362p.

  • Kuk V, Prelogovi E and Dragieevic I 2000 Seismotectonically active zones in the dinarides; Geol. Croat. 53/2 295–303.

    Google Scholar 

  • Litchfield N J, Campbell J K and Nicol A 2003 Recognition of active reverse faults and folds in North Canterbury, New Zealand, using structural mapping and geomorphic analysis; New Zeal. J. Geol. Geophys. 46(4) 563–579.

    Article  Google Scholar 

  • Lo C P and Yeung A K W 2007 Concepts and Techniques of Geographic Information System, Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Mahmood S A and Gloaguen R 2012 Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis; Geosci. Front. 3(4) 407–428.

    Article  Google Scholar 

  • McCann T and Saintot A 2003 Tracing tectonic deformation using the sedimentary record; Geol. Soc. London, Spec. Publ. 208 1–28.

    Article  Google Scholar 

  • Melton M A 1957 An analysis of the relations among elements of climate, surface properties and geomorphology; Columbia University, New York, NY, USA.

    Book  Google Scholar 

  • Miller V C 1953 A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee, Naval Research Project 389-042, Technical Report, 3, Columbia University.

  • Mitra G, Bhattacharyya K and Mukul M 2010 The Lesser Himalayan Duplex in Sikkim: Implications for variations in Himalayan shortening; J. Geol. 75 289–301.

    Google Scholar 

  • Mottram C M, Argles T W, Haris N B W, Parish R R, Horstwod M S A, Waren C J and Gupta S 2014 Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya; J. Geol. Soc. London 171 255–268.

    Article  Google Scholar 

  • Mrinalinee Devi R K, Bhakuni S S, Phukan M K and Duarah R 2016 Tectonic forcing of drainages and geomorphic features developed across Himalayan mountain frontal part of western limb of Siang Antiform, Arunachal Himalaya; Environ. Earth Sci. 75 413, https://doi.org/10.1007/s12665-015-5081-4.

    Article  Google Scholar 

  • Mukherjee A and Sharma P K 2013 Geology and mineral resources of West Bengal; Report; Geological Survey of India, West Bengal, Kolkata.

    Google Scholar 

  • Mukul M 2000 The geometry and kinematics of the main boundary thrust and related neotectonics in the Darjiling Himalayan fold and- thrust belt, West Bengal India; J. Struct. Geol. 22 1261–1283.

    Article  Google Scholar 

  • Mukul M, Sridevi Jade S, Ansari K and Abdul Matin A 2014 Seismotectonic implications of strike–slip earthquakes in the Darjiling–Sikkim Himalaya; Curr. Sci. India 106 198–210.

  • Musumeci G, Ribolini A and Spagnolo M 2003 The effects of late Alpine tectonics in the morphology of the Argentera Massif (Western Alps, Italy–France); Quat. Int. 102 191–201.

    Article  Google Scholar 

  • Nakata T 1972 Geomorphic history and crustal movements of foothills of the Himalaya; Inst. of Geography, Tohoku Univ., Sendai, 77p.

  • Nakata T 1989 Active faults of the Himalaya of India and Nepal; Geol. Soc. Am. Spec. Paper 232 243–264.

    Google Scholar 

  • Nath S K, Pal I, Shukla K, Pal D K, Raj A, Thingbaijam K S and Bansal B K 2007 Earthquake hazard zonation of Sikkim Himalaya using a GIS platform; Nat. Hazards 45 333–377.

    Google Scholar 

  • Nir D 1957 The ratio of relative and absolute altitude of Mt. Carmel; Geogr. Rev. 27 564–569.

    Article  Google Scholar 

  • Ozdemir H and Bird D 2009 Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods; Environ. Geol. 56 1405–1415.

    Article  Google Scholar 

  • Pal I, Nath S K, Shukla K, Pal D K, Raj A, Thingbaijam K K S and Bansal B K 2008 Earthquake hazard zonation of Sikkim Himalaya using a GIS platform; Nat. Hazards 45 333–377.

    Article  Google Scholar 

  • Panek T 2004 The use of morphometric parameters in tectonic geomorphology (on the example of the Western Beskydy Mts); Geographica 1 111–126.

    Google Scholar 

  • Perez-Pena J V, Azor A, Azanon J M and Keller E A 2010 Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis; Geomorphology 119 74–87.

    Article  Google Scholar 

  • Prabu P and Baskaran R 2013 Drainage morphometry of upper Vaigai river Sub-basin, Western Ghats, south India using remote sensing and GIS; J. Geol. 82 519–528.

    Article  Google Scholar 

  • Ramírez-Herrera M T 1998 Geomorphic assessment of active tectonics in the Acambay Graben, Mexican Volcanic Belt; Earth Surf. Process. 23 317–332.

    Google Scholar 

  • Reddy G P O, Maji A K and Gajbhiye K S 2004 Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India – A remote sensing and GIS approach; Int. J. Appl. Earth Obs. Geoinf. 6(1) 1–16.

    Article  Google Scholar 

  • Sarkar S S, Ali M A and Bhattacharya G 2012 Geology and mineral resources of Sikkim, report; Geological Survey of India, West Bengal, Kolkata.

    Google Scholar 

  • Sarma J N, Acharjee S and Murgante B 2015 Morphotectonic study of the Brahmaputra basin using geoinformatics; J. Geol. 86 324–330.

    Google Scholar 

  • Schumm S A 1956 The evolution of drainage system and slopes in badlands at Perth Amboy, New Jersey; Bull. Geol. Soc. Am. 67 597–646.

    Article  Google Scholar 

  • Shukla D P, Dubey C S, Ningreichon A S, Singh R P, Mishra B K and Singh S K 2014 GIS-based morpho-tectonic studies of Alaknanda river basin: A precursor for hazard zonation; Nat. Hazards 71 1433–1452.

    Article  Google Scholar 

  • Silva P G, Goy J L, Zazo C and Bardaj T 2003 Fault-generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity; Geomorphology 50 203–225.

    Article  Google Scholar 

  • Singh S 2005 Geomorphology; Prayag Pustak Bhawan, Allahabad, India.

    Google Scholar 

  • Singh Y, Biju John B, Ganapathy G P, George A, Harisanth S, Divyalakshmi K S and Kesavan S 2016 Geomorphic observations from southwestern terminus of Palghat Gap, south India and their tectonic implications; J. Earth Syst. Sci. 125(4) 821–839.

    Article  Google Scholar 

  • Stoddart D R 1969 Climatic geomorphology in water earth, and man (ed.) Chorley R J, Methen and Co. Ltd., pp. 473–485.

  • Strahler A N 1952 Hypsometric (area–altitude) analysis of erosional topography; Geol. Soc. Am. Bull. 63 1117–1142.

    Article  Google Scholar 

  • Thakur V C 2013 Active tectonics of Himalayan Frontal fault system; Int. J. Earth Sci. (Geol. Rundsch) 102 1791–1810.

    Article  Google Scholar 

  • Thomas J, Joseph S and Thrivikramaji K P et al. 2012 Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India; Environ. Earth Sci. 66 2353–2366.

    Article  Google Scholar 

  • Tsodulos I M, Koukouvelas I K and Pavlides S 2008 Tectonic geomorphology of the easternmost extension of the Gulf of Corinth (Beotia, Central Greece); Tectonophys. 453 211–232.

    Article  Google Scholar 

  • Venkatesan A, Jothibasu A, Anbazhagan S 2015 GIS based quantitative geomorphic analysis of fluvial system and implications on the effectiveness of river basin environmental management; In: Environmental management of river basin ecosystems (eds) Ramkumar M et al., Springer, Earth Syst. Sci., https://doi.org/10.1007/978-3-319-13425-3_11.

    Chapter  Google Scholar 

  • Verma M and Bansal B K 2013 Seismic hazard assessment and mitigation in India: An overview; Int. J. Earth Sci. (Geol. Rundsch) 102 1203–1218.

    Article  Google Scholar 

  • Viveen W, Balen R T, Schoorl J M, Veldkamp A, Temme A J A M and Vidal-Romani J R 2012 Assessment of recent tectonic activity on the NW Iberian Atlantic margin by means of geomorphic indices and field studies of the lower Miño river terraces; Tectonophys. 544–545 13–30.

    Article  Google Scholar 

  • Zavoianu I 1985 Morphometry of drainage basins; Institute of Geography, Bucharest.

    Google Scholar 

  • Zuchiewicz W 1989 Morphotectonic phenomena in the Polish Flysch Carpathians: A case study of the eastern Beskid Niski mountains; Questiones Geographicae 15(2) Special Issue, pp. 155–167.

Download references

Acknowledgements

The authors would like to thank the reviewers and the editor for their suggestions and critical reviews. The authors are also thankful to SRM Institute of Science and Technology sponsored Pilot Research on Selective Excellence programme for providing all necessary facilities and constant encouragement for doing this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehasish Ghosh.

Additional information

Corresponding Editor: Arkoprovo Biswas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Sivakumar, R. An assessment of geomorphometric anomalies and their significance on the seismotectonic activity through geoinformatics. J Earth Syst Sci 128, 178 (2019). https://doi.org/10.1007/s12040-019-1175-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1175-9

Keywords

Navigation