Skip to main content

Advertisement

Log in

Arc-parallel compression in the NW Himalaya: Evidence from structural and palaeostress studies of brittle deformation from the clasts of the Upper Siwalik, Uttarakhand, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The sub-Himalayan Upper Siwalik rocks, between the Main Boundary Thrust (MBT) to the north and the Main Frontal Thrust (MFT) to the south, are intensely brittle sheared and jointed. Our field studies around Dehradun (India) furnished at least eight small-scale brittle slip directions, viz., \({\sim }\hbox {top-to-SW/SSW}\) (up), top-to-SW/SSW (down), top-to-NE/NNE (up), top-to-NE/ENE (down), top-to-NW (down), top-to-SE/SSE (up), top-to-SE/SSE (down) and top-to-NW/NNW (up). Additionally, we report near-vertical faults, four sets of joints (inclined: \(\hbox {J}_{1}\) and \(\hbox {J}_{2}\); near-vertical: \(\hbox {J}_{\mathrm{1V}}\) and \(\hbox {J}_{\mathrm{2V}}\)). Palaeostress analyses using T-TECTO Studio X5 with all joint sets reveal two compression directions \({\sim }\hbox {ENE}\)–WSW and \({\sim }\hbox {NNW}\)–SSE. We propose two possible temporal relations between the joint sets: (i) \(\hbox {J}_{1}\), \(\hbox {J}_{2}\), \(\hbox {J}_{\mathrm{1V}}\) and \(\hbox {J}_{\mathrm{2V}}\) are coeval (\({\sim }\hbox {ENE}\)–WSW compression) and (ii) \(\hbox {J}_{\mathrm{1V}}\) and \(\hbox {J}_{\mathrm{2V}}\) developed coevally (\({\sim }\hbox {ENE}\)–WSW compression) followed by \(\hbox {J}_{1}\) and \(\hbox {J}_{2}\) (\({\sim }\hbox {NNW}\)–SSE compression), because arc-parallel compression (if any) occurs later than arc-perpendicular compression. The presence of already well-known strike-slip faults, viz., the Yamuna tear fault and the Ganga tear fault, at high angles, \({\sim }55{^{\circ }}\) and \({\sim }85{^{\circ }}\) to the orogenic trend, implies a possible arc-parallel compression in the Siwalik Himalaya in the study area. This \({\sim }\hbox {NNW}\)–SSE compression could also indicate a localised stress reorientation due to the curvature of the Thrust planes, viz., the MFT and the Asan Thrust (as observed in plan view) close to the study area. This study further shows that arc-parallel compression need not be restricted to the inner arc of an orogen, and/or, as in the case of the Himalaya, near the syntaxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Angelier J 1984 Tectonic analysis of fault slip data sets; J. Geophys. Res. Solid Earth 89 5835–5848.

    Google Scholar 

  • Angelier J 1989 From orientation to magnitudes in paleo-stress determinations using fault slip data; J. Struct. Geol. 11 37–50.

    Google Scholar 

  • Angelier J 1990 Inversion of field data in fault tectonics to obtain the regional stress – III. A new rapid direct inversion method by analytical means; Geophys. J. Int. 103 363–376.

    Google Scholar 

  • Angelier J and Mechler P 1977 A graphic method applied to the localization of principal stresses for fault tectonics and seismology: The right dihedral method; Bull. Soc. Geol. Fr. 19 1309–1318.

    Google Scholar 

  • Armijo R, Carey E and Cisternas A 1982 The inverse problem in microtectonics and the separation of tectonic phases; Tectonophys. 82 145–160.

    Google Scholar 

  • Banerjee S, Matin A and Mukul M 2015 Overburden-induced flattening structure in the Himalaya: Mechanism and implication; Curr. Sci. 109 1–8.

    Google Scholar 

  • Baudon C and Cartwright J 2008 Early stage evolution of growth faults: 3D seismic insights from the Levant basin, eastern Mediterranean; J. Struct. Geol. 30 888–898.

    Google Scholar 

  • Bhola A M, Dinkar G K and Singh V K 2011 Analysis of joints in Precambrian rocks of Delhi–Aravalli Belt, Manesar area, Gurgaon district, Haryana, India; In: Proceeding of the 2nd International Conference Precambrian Continental Growth and Tectonism, pp. 978–981.

  • Billings Marland P 2008 Structural Geology; 3rd edn, Prentice-Hall, New Jersey, 624p, ISBN: 978-8120300590.

    Google Scholar 

  • Biswas T and Dutta D 2016 Broken pebble with small-scale brittle reverse-fault with top-to-SSE. Photograph of the month; J. Struct. Geol. 85 iii.

  • Bonini M, Sani F, Moratti G and Benvenuti M G 2011 Quaternary evolution of the Lucania Apennine thrust front area (Southern Italy), and its relations with the kinematics of the Adria Plate boundaries; J. Geodyn. 51 125–140.

    Google Scholar 

  • Borah K, Kanna N, Rai S S and Prakasam K S 2015 Sediment thickness beneath the Indo-Gangetic plain and Siwalik Himalaya inferred from receiver function modelling; J. Asian Earth Sci. 99 41–56.

    Google Scholar 

  • Bott M H P 1959 The mechanics of oblique slip faulting; Geol. Mag. 96 109–117.

    Google Scholar 

  • Boutelier D A and Oncken O 2010 Role of the plate margin curvature in the plateau buildup: Consequences for the central Andes; J. Geophys. Res. Solid Earth 115, https://doi.org/10.1029/2009JB006296.

  • Burg J P, Célérier B, Chaudhry N M, Ghazanfar M, Gnehm F and Schnellmann M 2005 Fault analysis and paleo-stress evolution in large strain regions: Methodological and geological discussion of the southeastern Himalayan fold-and-thrust belt in Pakistan; J. Asian Earth Sci. 24 445–467.

    Google Scholar 

  • Carey S W 1955 The orocline concept in geotectonics – part I; Pap. Proc. R. Soc. Tasmania 89 255–288.

    Google Scholar 

  • Carosi R, Montomoli C and Pertusati P C 2002 Late orogenic structures and orogen-parallel compression in the Northern Apennines; Bull. Soc. Geol. Ital. 1 167–180.

    Google Scholar 

  • Chatterjee S, Goswami A and Scotese C R 2013 The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia; Gondwana Res. 23 238–267.

    Google Scholar 

  • Chester J S and Fletcher R C 1997 Stress distribution and failure in anisotropic rock near a bend on a weak fault;J. Geophys. Res. Solid Earth 102 693–708.

    Google Scholar 

  • Coleman M E 1996 Orogen-parallel and orogen-perpendicular extension in the central Nepalese Himalayas; Geol. Soc. Am. Bull. 108 1594–1607.

    Google Scholar 

  • Copley A, Avouac J P and Royer J Y 2010 India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions;J. Geophys. Res. Solid Earth 115 B03410.

    Google Scholar 

  • Conybeare C E B 1979 Lithostratigraphic analysis of sedimentary basins; Academic Press, New York, pp. 1–555.

    Google Scholar 

  • Craig J, Hakhoo N, Bhat G M, Hafiz M, Khan M R, Misra R, Pandita S K, Raina B K, Thurow J, Thusu B, Ahmed W and Khullar S 2018 Petroleum systems and hydrocarbon potential of the North-West Himalaya of India and Pakistan; Earth Sci. Rev. 187 109–185.

    Google Scholar 

  • DeCelles P G, Gehrels G E, Najman Y, Martin A J, Carter A and Garzanti E 2004 Detrital geochronology and geochemistry of cretaceous–early miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis; Earth Planet. Sci. Lett. 227 313–330.

    Google Scholar 

  • Del Greco K, Johnston S T, Gutiérrez-Alonso G, Shaw J and Lozano J F 2016 Interference folding and orocline implications: A structural study of the Ponga unit, Cantabrian orocline, northern Spain; Lithosphere 8 757–768.

    Google Scholar 

  • Delvaux D and Sperner B 2003 Stress tensor inversion from fault kinematic indicators and focal mechanism data: The TENSOR program. New insights into structural interpretation and modelling; Geol. Soc. Spec. Publ. 212 75–100.

    Google Scholar 

  • Dubey A K 2014 Understanding an orogenic belt. Structural evolution of the Himalaya; Springer, Berlin, 401p, ISBN: 978-3-319-05588-6.

    Google Scholar 

  • Durand V, Bouchon M, Floyd M A, Theodulidis N, Marsan D, Karabulut H and Schmittbuhl J 2014 Observation of the spread of slow deformation in Greece following the breakup of the slab; Geophys. Res. Lett. 41 7129–7134.

    Google Scholar 

  • Engelder T and Peacock D C 2001 Joint development normal to regional compression during flexural-flow folding: The Lilstock buttress anticline, Somerset, England; J. Struct. Geol. 23 259–277.

    Google Scholar 

  • Eidelman A and Reches Z 1992 Fractured pebbles – A new stress indicator; Geology 20 307–310.

    Google Scholar 

  • Farrell S G 1984 A dislocation model applied to slump structures, Ainsa basin, South Central Pyrenees; J. Struct. Geol. 6 727–736.

    Google Scholar 

  • Faulkner D R, Mitchell T M, Rutter E H and Cembrano J 2008 On the structure and mechanical properties of large strike-slip faults; In: The internal structure of fault zones: Implications for mechanical and fluid-flow properties (eds) Wibberley C A J, Kurz W, Imber J, Holdsworth R E and Collettini C, Geol. Soc. Spec. Publ. 299 139–150.

    Google Scholar 

  • Fossen H 2016 Structural Geology; 2nd edn, Cambridge University Press, Cambridge, pp. 1–510. ISBN: 978-1107057647.

    Google Scholar 

  • Garzanti E, Baud A and Mascle G 1987 Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India); Geodin. Acta 1 297–312.

    Google Scholar 

  • Gibson I L 1969 The structure and volcanic geology of an axial portion of the main Ethiopian rift; Tectonophys. 8 561–565.

    Google Scholar 

  • Godin L, La Roche R S, Waffle L and Harris L B 2018 Influence of inherited Indian basement faults on the evolution of the Himalayan orogen; In: Crustal architecture and evolution of the Himalaya–Karakoram–Tibet orogen (eds) Sharma R, Villa I M and Kumar S, Geol. Soc. London, Spec. Publ. 481, https://doi.org/10.1144/SP481.4.

  • Goswami P K and Deopa T 2018 Petrotectonic setting of the provenance of lower Siwalik sandstones of the Himalayan foreland basin, south eastern Kumaun Himalaya, India; Island Arc 27, https://doi.org/10.1111/iar.12242.

    Google Scholar 

  • Guillot S, Garzanti E, Baratoux D, Marquer D, Mahéo G and de Sigoyer J 2003 Reconstructing the total shortening history of the NW Himalaya. Geochem. Geophys. Geosyst. 4, https://doi.org/10.1029/2002GC000484.

  • Gutiérrez-Alonso G, Johnston S T, Weil A B, Pastor-Galán D and Fernández-Suárez J 2012 Buckling an orogen: The Cantabrian orocline; GSA Today 22 4–9.

    Google Scholar 

  • Hancock P L 1985 Brittle microtectonics: Principles and practice; J. Struct. Geol. 7(3) 437–457.

    Google Scholar 

  • Hancock P L, Al Kadhi A, Barka A A and Bevan T G 1987 Aspects of analysing brittle structures; Ann. Tecton. 1 5–19.

    Google Scholar 

  • Hintersberger E, Thiede R C, Strecker M R and Hacker B R 2010 East–west extension in the NW Indian Himalaya; Geol. Soc. Am. Bull. 122 1499–1515.

    Google Scholar 

  • Hippolyte J C 2001 Palaeostress and neotectonic analysis of sheared conglomerates: Southwest Alps and Southern Apennines; J. Struct. Geol. 23 421–429.

    Google Scholar 

  • Hu J C and Angelier J 2004 Stress permutations: Three-dimensional distinct element analysis accounts for a common phenomenon in brittle tectonics; J. Geophys. Res. Solid Earth 109, https://doi.org/10.1029/2003JB002616.

    Google Scholar 

  • Hu X, Wang J, BouDagher-Fadel M, Garzanti E and An W 2016 New insights into the timing of the India–Asia collision from the Paleogene Quxia and Jialazi formations of the Xigazeforearc basin, South Tibet; Gond. Res. 32 76–92.

    Google Scholar 

  • Jagoutz O, Royden L, Holt A F and Becker T W 2015 Anomalously fast convergence of India and eurasia caused by double subduction; Nat. Geosci. 8 475–478.

    Google Scholar 

  • Jain A K, Kumar D, Singh S, Kumar A and Lal N 2000 Timing, quantification and tectonic modelling of Pliocene–Quaternary movements in the NW Himalaya: Evidence from fission track dating; Earth Planet. Sci. Lett. 179 437–451.

    Google Scholar 

  • Jayangondaperumal R, Dubey A K and Sen K 2010 Structural and magnetic fabric studies of recess structures in the western Himalaya: Implications for 1905 Kangra earthquake; J. Geol. Soc. In. 75 225–238.

    Google Scholar 

  • Jayangondaperumal R, Thakur V C, Joevivek V, Rao P S and Gupta A K 2018 Active tectonics of Kumaun and Garhwal Himalaya; Springer, Singapore, pp. 61–78, ISBN: 978-981-10-8243-6.

  • Jessup M J and Cottle J M 2010 Progression from south-directed extrusion to orogen-parallel extension in the southern margin of the Tibetan plateau, Mount Everest region, Tibet; J. Geol. 118 467–486.

    Google Scholar 

  • Jessup M J, Newell D L, Cottle J M, Berger A L and Spotila J A 2008 Orogen-parallel extension and exhumation enhanced by denudation in the trans-Himalayan Arun River gorge, Ama Drime Massif, Tibet–Nepal; Geology 36 587–590.

    Google Scholar 

  • Johnston S T, Weil A B and Gutiérrez-Alonso G 2013 Oroclines: Thick and thin; Geol. Soc. Am. Bull. 125 643–663.

    Google Scholar 

  • Jones R M P 1980 Basinalisostatic adjustment faults and their petroleum significance; Bull. Can. Petrol. Geol. 28 211–251.

    Google Scholar 

  • Karunakaran C and Rao R 1976 Status of hydrocarbon in the Himalayan region: Contributions to stratigraphy and structure; Geol. Surv. India Misc. Publ. 41 1–66.

    Google Scholar 

  • Kaven J O, Maerten F and Pollard D D 2011 Mechanical analysis of fault slip data: Implications for paleostress analysis; J. Struct. Geol. 33 78–91.

    Google Scholar 

  • Khan P K, Ansari M A and Mohanty S 2014 Earthquake source characteristics along the arcuate Himalayan belt: Geodynamic implications; J. Earth Syst. Sci. 123 1013–1030.

    Google Scholar 

  • Konstantinou K I, Kalogeras I S, Melis N S, Kourouzidis M C and Stavrakakis G N 2006 The 8 January 2006 earthquake (Mw 6.7) offshore Kythira Island, Southern Greece: Seismological, strong-motion, and macroseismic observations of an intermediate-depth event; Seismol. Res. Lett. 77 544–553.

    Google Scholar 

  • Kumar R, Ghosh S K, Mazari R K and Sangode S J 2003 Tectonic impact on the fluvial deposits of plio-pleistocene Himalayan foreland basin, India; Sedim. Geol. 158 209–234.

    Google Scholar 

  • Langille J M, Jessup M J, Cottle J M, Newell D and Seward G 2010 Kinematic evolution of the Ama Drime detachment: Insights into orogen-parallel extension and exhumation of the Ama Drime Massif, Tibet–Nepal;J. Struct. Geol. 32 900–919.

    Google Scholar 

  • Lavé J and Avouac J P 2000 Active folding of fluvial terraces across the Siwalik Hills, Himalayas of central Nepal;J. Geophys. Res. 105 5735–5770.

    Google Scholar 

  • Lisle R J 1988 Romsa: A basic program for paleostress analysis using fault-striation data; Comput. Geosci. 14 255–259.

    Google Scholar 

  • Llana-Fúnez S, Burg J P, Hussain S S, Dawood H and Chaudhry M N 2006 Structural evolution of the footwall of the Indus suture in Malakand (N Pakistan) during the Himalayan collision; J. Asian Earth Sci. 27 691–706.

    Google Scholar 

  • MacDonald J, Backé G, King R, Holford S and Hillis R 2012 Geomechanical modelling of fault reactivation in the ceduna Sub-basin, bight basin, Australia; In: Faulting, fracturing and igneous intrusion in the earth’s crust (eds) Healy D, Butler R W H, Shipton Z K and Sibson R H, Geol. Soc. London, Spec. Publ. 367 71–89.

  • Macedo J and Marshak S 1999 Controls on the geometry of fold-thrust belt salient; Geol. Soc. Am. Bull. 111 1808–1822.

    Google Scholar 

  • Mandal S, Robinson D M, Khanal S and Das O 2015 Redefining the tectonostratigraphic and structural architecture of the almora klippe and the Ramgarh–Munsiari thrust sheet in NW India; In: Tectonics of the Himalaya (eds) Mukherjee S, Carosi R, van der Beek P, Mukherjee B K and Robinson D, Geol. Soc. London, Spec. Publ. 412 247–269.

  • Mandl G 2005 Rock joints. The mechanical genesis (1st edn); Springer, Berlin, 221p, ISBN: 978-3-540-26457-6.

    Google Scholar 

  • Marrett R and Allmendinger R W 1990 Kinematic analysis of fault-slip data; J. Struct. Geol. 12 973–986.

    Google Scholar 

  • Mazzini A, Jonk R, Duranti D, Parnell J, Cronin B and Hurst A 2003 Fluid escape from reservoirs: Implications from cold seeps, fractures and injected sands part I. The fluid flow system; J. Geochem. Exp. 78 293–296.

    Google Scholar 

  • McCaffrey R 1992 Oblique plate convergence, slip vectors, and forearc deformation; J. Geophys. Res. 97 8905–8915.

    Google Scholar 

  • Misra A A, Bhattacharya G, Mukherjee S and Bose N 2014 Near N–S paleo-extension in the western Deccan region, India: Does it link strike-slip tectonics with India–Seychelles rifting? Int. J. Earth Sci. 103 1645–1680.

    Google Scholar 

  • Mukherjee S 2007 Geodynamics, deformation and mathematical analysis of metamorphic belts of the NW Himalaya; Unpublished PhD Thesis, Indian Institute of Technology Roorkee, pp. 1–267.

  • Mukherjee S 2010a Structures at meso and micro-scales in the Sutlej section of the higher Himalayan shear zone in Himalaya; e-Terra 7 1–27.

    Google Scholar 

  • Mukherjee S 2010b Microstructures of the zanskar shear zone; Earth Sci. Ind. 3 9–27.

    Google Scholar 

  • Mukherjee S 2012 Simple shear is not so simple! kinematics and shear senses in newtonian viscous simple shear zones; Geol. Mag. 149 819–826.

    Google Scholar 

  • Mukherjee S 2013a Atlas of shear zone structures in meso-scale; Springer, Berlin, 111p, ISBN: 978-3-319-00089-3.

    Google Scholar 

  • Mukherjee S 2013b Higher Himalaya in the Bhagirathi section (NW Himalaya, India): Its structures, backthrusts and extrusion mechanism by both channel flow and critical taper mechanisms; Int. J. Earth Sci. 102 1851–1870.

    Google Scholar 

  • Mukherjee S 2013c Deformation microstructures in rocks; Springer, Berlin, 111p, ISBN: 978-3-642-25608-0.

    Google Scholar 

  • Mukherjee S 2014 Review of flanking structures in meso- and micro-scales; Geol. Mag. 151 957–974.

    Google Scholar 

  • Mukherjee S 2015 A review on out-of-sequence deformation in the Himalaya; In: Tectonics of the Himalaya (eds) Mukherjee S, Carosi R, van der Beek P, Mukherjee B K and Robinson D, Geol. Soc. London, Spec. Publ. 412 67–109.

  • Mukherjee S and Koyi H A 2010a Higher Himalayan shear zone, Sutlej section: Structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes; Int. J. Earth Sci. 99 1267–1303.

    Google Scholar 

  • Mukherjee S and Koyi H A 2010b Higher Himalayan shear zone, zanskar Indian Himalaya microstructural studies and extrusion mechanism by a combination of simple shear and channel flow; Int. J. Earth Sci. 99 1083–1110.

    Google Scholar 

  • Mukherjee S and Khonsari M M 2017 Brittle rotational faults and the associated shear heating; Mar. Petrol. Geol. 88 551–554.

    Google Scholar 

  • Murphy M A and Copeland P 2005 Transtensional deformation in the central Himalaya and its role in accommodating growth of the Himalayan orogeny; Tectonics 24 TC4012.

    Google Scholar 

  • Najman Y, Jenks D, Godin L, Boudagher-Fadel M, Millar I, Garzanti E, Horstwood M and Bracciali L 2017 The Tethyan Himalayan detrital record shows that India–Asia terminal collision occurred by 54 Ma in the Western Himalaya; Earth Planet. Sci. Lett. 459 301–310.

    Google Scholar 

  • Nanda A C 2002 Upper Siwalik mammalian faunas of India and associated events; J. Asian Earth Sci. 21 47–58.

    Google Scholar 

  • Nagy C, Godin L, Antolín B, Cottle J and Archibald D 2015 Mid-Miocene initiation of orogen-parallel extension, NW Nepal Himalaya; Lithosphere 7 483–502.

    Google Scholar 

  • Navabpour P and Barrier E 2012 Stress states in the Zagros fold-and-thrust belt from passive margin to collisional tectonic setting; Tectonophys. 581 76–83.

    Google Scholar 

  • Nemcok M, Kovác D and Lisle R J 1999 A stress inversion procedure for polyphasercalcite twin and fault/slip data sets; J. Struct. Geol. 21 597–611.

    Google Scholar 

  • Nemcok M and Lisle R J 1995 A stress inversion procedure for polyphase fault/slip datasets; J. Struct. Geol. 17 1445–1453.

    Google Scholar 

  • Ni J and Barazangi M 1985 Active tectonics of the western Tethyan Himalaya above the underthrusting Indian plate: The upper Sutlej river basin as a pull-apart structure; Tectonophys. 112 277–295.

    Google Scholar 

  • Oncken O 1988 Aspects of the reconstruction of the stress history of a fold and thrust belt (Rhenish Massif, Federal Republic of Germany); Tectonophys. 152 19–40.

    Google Scholar 

  • Parameswaran R M and Rajendran K 2016 The 2016 \({M}_{\rm w}\) 6.7 Imphal earthquake in the Indo-Burman range: A case of continuing intraplate deformation within the subducted slab; Bull. Seismol. Soc. Am. 106 2653–2662.

    Google Scholar 

  • Passchier C W and Trouw R A 2005 Microtectonics; 2nd edn, Springer, Berlin, 366p. ISBN: 978-3-540-29359-0.

    Google Scholar 

  • Pastor-Galán D, Gutiérrez-Alonso G and Weil A B 2011 Orocline timing through joint analysis: Insights from the Ibero-Armorican Arc; Tectonophys. 507 31–46.

    Google Scholar 

  • Peresson H and Decker K 1997 The tertiary dynamics of the northern eastern Alps (Austria): Changing palaeostresses in a collisional plate boundary; Tectonophys. 272 125–157.

    Google Scholar 

  • Petersen K, Clausen O R and Korstgård J A 1992 Evolution of a salt-related listric growth fault near the D-1 well, block 5605, Danish North Sea: Displacement history and salt kinematics; J. Struct. Geol. 14 565–577.

    Google Scholar 

  • Powers P M, Lillie R J and Yeats R S 1998 Structure and shortening of the Kangra and Dehradun re-entrants, Sub Himalaya; Geol. Soc. Am. Bull. 110 1010–1027.

    Google Scholar 

  • Prasad B R, Klemperer S L, Rao V V, Tewari H C and Khare P 2011 Crustal structure beneath the Sub-Himalayan fold–thrust belt, Kangra recess, northwest India, from seismic reflection profiling: Implications for Late Paleoproterozoic orogenesis and modern earthquake hazard; Earth Planet. Sci. Lett. 308 218–228.

    Google Scholar 

  • Qureshy M N, Venkatachalam S and Subrahmanyam C 1974 Vertical tectonics in the Middle Himalayas: An appraisal from recent gravity data; Geol. Soc. Am. 85 921–926.

    Google Scholar 

  • Raiverman V 2012 Unconformity-riddled cenozoics of the foreland basin and elevation of the Himalaya; Ind. Geol. Cong., Roorkee, 147p, ISBN: 9788192072401.

  • Rautela P and Sati D 1996 Recent crustal adjustment on Dehradun valley, western Uttar Pradesh, India; Curr. Sci. 71 776–780.

    Google Scholar 

  • Roberts J C 1975 Jointing and minor tectonics of the S. Crop of the South Wales coalfield between Machen and Bridgend; Geol. J. 10 147–160.

    Google Scholar 

  • Rowley D B 1996 Age of initiation of collision between India and Asia: A review of stratigraphic data; Earth Planet. Sci. Lett. 145 1–13.

    Google Scholar 

  • Sana H and Nath S K 2016 In and around the Hazara-Kashmir syntaxis: A Seismotectonic and seismic hazard perspective; J. Ind. Geophys. Union 20 496–505.

    Google Scholar 

  • Sandhu M, Kumar D and Teotia S S 2017 Estimation of site amplification functions for the National Capital (Delhi) Region, India; Nat. Hazards 85 171–195.

    Google Scholar 

  • Sayab M, Shah S Z and Aerden D 2016 Metamorphic record of the NW Himalayan orogeny between the Indian plate-Kohistan Ladakh Arc and Asia: Revelations from foliation intersection axis (FIA) controlled P–T–t–d paths; Tectonophys. 671 110–126.

    Google Scholar 

  • Saylor J, DeCelles P, Gehrels G, Murphy M, Zhang R and Kapp P 2010 Basin formation in the high Himalaya by arc-parallel extension and tectonic damming: Zhada basin, southwestern Tibet; Tectonics 29 1–24.

    Google Scholar 

  • Seeber L and Pêcher A 1998 Strain partitioning along the Himalayan arc and the Nanga Parbat antiform; Geology 26 791–794.

    Google Scholar 

  • Segall P and Pollard D D 1983 Nucleation and growth of strike slip faults in granite; J. Geophys. Res. 88 555–568.

    Google Scholar 

  • Shah S Z, Sayab M, Aerden D and Khan M A 2011 Foliation intersection axes preserved in garnet porphyroblasts from the Swat area, NW Himalaya: A record of successive crustal shortening directions between the Indian plate and Kohistan–Ladakh island Arc; Tectonophys. 509 14–32.

    Google Scholar 

  • Shan Y and Liang X 2015 Inversion of fault data with low diversity for stress: Principles and applications; J. Struct. Geol. 77 228–238.

    Google Scholar 

  • Simón J L In Press Forty years of paleostress analysis: Has it attained maturity? J. Struct. Geol., https://doi.org/10.1016/j.jsg.2018.02.011.

  • Singh T and Jain V 2009 Tectonic constraints on watershed development on frontal ridges: Mohand ridge, NW Himalaya, India; Geomorphology 106 231–241.

    Google Scholar 

  • Sissons J B and Cornish R 1982 Differential glacio-isostasic uplift of crustal blocks at Glen Roy, Scotland; Quat. Res. 18 268–288.

    Google Scholar 

  • Srivastava D C and John G 1999 Deformation in the Himalayan frontal fault zone: Evidence from small-scale structures in Mohand-Khara area, NW Himalaya; In: Geodynamics of the NW Himalaya (eds) Jain A K, Manickavasagam R M, Gond. Res. Mem., Vol. 6, Osaka, Santosh M and Yoshida M (series eds), pp. 273–284.

  • Srivastava V, Mukul M and Barnes J B 2016 Main frontal thrust deformation and topographic growth of the mohand range, northwest Himalaya; J. Struct. Geol. 93 131–148.

    Google Scholar 

  • Srivastava V, Mukul M, Barnes J B and Mukul M 2018 Geometry and kinematics of Main Frontal thrust-related fault propagation folding in the Mohand Range, northwest Himalaya; J. Struct. Geol. 115, 1–18.

    Google Scholar 

  • Styron R H, Taylor M H and Murphy M A 2011 Oblique convergence, arc-parallel extension, and the role of strike-slip faulting in the high Himalaya; Geosphere 7 582–596.

    Google Scholar 

  • Suppe J 1983 Geometry and kinematics of fault-bend folding; Am. J. Sci. 283 689–692.

    Google Scholar 

  • Thakur V C 2013 Active tectonics of Himalayan frontal fault system; Int. J. Earth Sci. 102 1791–1810.

    Google Scholar 

  • Thakur V C and Pandey A K 2004 Late quaternary tectonic evolution of Dun in fault bend/propagated fold system, Garhwal Sub-Himalaya; Curr. Sci. 87 1567–1576.

    Google Scholar 

  • Thakur V C, Pandey A K and Suresh N 2007 Late Quaternary–Holocene evolution of Dun structure and the Himalayan frontal fault zone of the Garhwal Sub-Himalaya, NW India; J. Asian Earth Sci. 29 305–319.

    Google Scholar 

  • Tindall S and Eckert A 2015 Geometric and mechanical-stiffness controls on jointing in cataclastic deformation bands; J. Struct. Geol. 77 126–137.

    Google Scholar 

  • Tranos M D 2012 Slip preference on pre-existing faults: A guide tool for the separation of heterogeneous fault-slip data in extensional stress regimes; Tectonophys. 544 60–74.

    Google Scholar 

  • Tranos M D 2015 TR method (TRM): A separation and stress inversion method for heterogeneous fault-slip data driven by Andersonian extensional and compressional stress regimes; J. Struct. Geol. 79 57–74.

    Google Scholar 

  • Tranos M D 2018 The use of stress tensor discriminator faults in separating heterogeneous fault-slip data with best-fit stress inversion methods. II. Compressional stress regimes; J. Struct. Geol. 102 168–178.

    Google Scholar 

  • Treloar P J, Potts G J, Wheeler J and Rex D C 1991 Structural evolution and asymmetric uplift of the Nanga Parbat syntaxis, Pakistan Himalaya; Geol. Rund. 80 411–428.

    Google Scholar 

  • Twiss R J and Unruh J R 1998 Analysis of fault slip inversions: Do they constrain stressor strain rate? J. Geophys. Res. Solid Earth 103 12,205–12,222.

    Google Scholar 

  • Upton P, Begbie M and Craw D 2008 Numerical modelling of mechanical controls on coeval steep and shallow dipping auriferous quartz vein formation in a thrust zone, Macraes mine, New Zealand; Miner. Depos. 43 23–35.

    Google Scholar 

  • Valdiya K S 2016 The making of India. Geodynamic evolution; 1st edn, Springer, Berlin, 924p. ISBN: 978-3-319-25029-8.

    Google Scholar 

  • van der Pluijm B A and Marshak S 2004 Earth Structure: An Introduction to Structural Geology and Tectonics; 2nd edn, W. W. Norton & Company, New York, 145p, ISBN: 978-0393924671.

    Google Scholar 

  • van Hinsbergen D J, Steinberger B, Doubrovine P V and Gassmöller R 2011 Acceleration and deceleration of India-Asia convergence since the cretaceous: Roles of mantle plumes and continental collision; J. Geophys. Res. Solid Earth 116 B008051.

    Google Scholar 

  • Viti M, De Luca J, Babbucci D, Mantovani E, Albarello D and D’Onza F 2004 Driving mechanism of tectonic activity in the northern Apennines: Quantitative insights from numerical modelling; Tectonics 23, https://doi.org/10.1029/2004TC001623.

    Google Scholar 

  • Wallace R E 1951 Geometry of shearing stress and relation to faulting; J. Geol. 59 118–130.

    Google Scholar 

  • Wang K and He J 1999 Mechanics of low-stress forearcs: Nankai and Cascadia; J. Geophys. Res. Solid Earth 104 15191–15205.

    Google Scholar 

  • Weil A B, Gutiérrez-Alonso G, Johnston S T and Pastor-Galán D 2013 Kinematic constraints on buckling a lithospheric-scale orocline along the northern margin of Gondwana: A geologic synthesis; Tectonophys. 582 25–49.

    Google Scholar 

  • Weil A B and Sussman A J 2004 Classifying curved orogens based on timing relationships between structural development and vertical-axis rotations; In: Orogenic curvature: Integrating paleomagnetic and structural analyses (eds) Sussman A J and Weil A B, Geol. Soc. Am. Spec. Publ. 383 1–15.

  • Wesnousky S G, Kumar S, Mahindra R and Thakur V C 1999 Uplift and convergence along the Himalayan frontal thrust of India; Tectonics 18 967–976.

    Google Scholar 

  • White L T and Lister G S 2012 The collision of India with Asia; J. Geodsy. 56 7–17.

    Google Scholar 

  • Winslow M A 1983 Clastic dike swarms and the structural evolution of the foreland fold and thrust belt of the southern Andes; Geol. Soc. Am. Bull. 94 1073–1080.

    Google Scholar 

  • Xu Z, Wang Q, Pêcher A, Liang F, Qi X, Cai Z, Li H and Cao H 2013 Orogen-parallel ductile extension and extrusion of the greater Himalaya in the late oligocene and miocene; Tectonics 32 191–215.

    Google Scholar 

  • Yamaji A 2000 The multiple inverse method: A new technique to separate stresses from heterogeneous fault-slip data; J. Struct. Geol. 22 441–452.

    Google Scholar 

  • Yamaji A, Otsubo M and Sato K 2006 Paleostress analysis using the Hough transform for separating stresses from heterogeneous fault-slip data; J. Struct. Geol. 28 980–990.

    Google Scholar 

  • Yang X X, Jing H W, Tang C A and Yang S Q 2017 Effect of parallel joint interaction on mechanical behavior of jointed rock mass models; Int. J. Rock Mech. Min. Sci. 92 40–53.

    Google Scholar 

  • Yin A 2006 Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation; Earth-Sci. Rev. 76 1–131.

    Google Scholar 

  • Žalohar J 2018 The Omega-theory: A New physics of earthquakes; In: Developments in structural geology and tectonics, Vol. 2 (series ed.) Mukherjee S; Elsevier, Amsterdam, 558p, ISBN: 978-0-12-814580-7.

  • Žalohar J and Vrabec M 2007 Paleostress analysis of heterogeneous fault-slip data: The Gauss method; J. Struct. Geol. 29 1798–1810.

    Google Scholar 

  • Žalohar J and Vrabec M 2008 Combined kinematic and paleostress analysis of fault-slip data: The multiple-slip method; J. Struct. Geol. 30 1603–1613.

    Google Scholar 

  • Žalohar J and Vrabec V 2010 Kinematics and dynamics of fault reactivation: The cosserat approach; J. Struct. Geol. 32 15–27.

    Google Scholar 

  • Zeitler P K 1985 Cooling history of the NW Himalaya, Pakistan; Tectonics 4 127–151.

    Google Scholar 

  • Zhang J, Ding L, Zhong D and Zhou Y 2000 Orogen-parallel extension in Himalaya: Is it the indicator of collapse or the product in process of compressive uplift? China Sci. Bull. 45 114–120.

    Google Scholar 

  • Zhang X, Jeffrey R G and Thiercelin M 2008 Escape of fluid-driven fractures from frictional bedding interfaces: A numerical study; J. Struct. Geol. 30 478–490.

    Google Scholar 

Download references

Acknowledgements

We thank IIT Bombay for funding the 2014 Siwalik fieldwork. DD and TB thank Jure Žalohar for providing the T-TECTO licence and clarifying several software-related queries. DD appreciates the helpful comments from Georg Mandl on the geneses of shear joints. SM thanks IIT Bombay for providing a research sabbatical in 2017. Prof S Gupta’s handling and the detailed thoughtful comments by two anonymous reviewers and Prof S Banerjee are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyajit Mukherjee.

Additional information

Corresponding Editor: Saibal Gupta

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 42 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, D., Biswas, T. & Mukherjee, S. Arc-parallel compression in the NW Himalaya: Evidence from structural and palaeostress studies of brittle deformation from the clasts of the Upper Siwalik, Uttarakhand, India. J Earth Syst Sci 128, 125 (2019). https://doi.org/10.1007/s12040-019-1138-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1138-1

Keywords

Navigation