Skip to main content
Log in

Late Quaternary sediments on the carbonate platform off western India: Analogues of ancient platform carbonates

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The Late Quaternary carbonate sediments and sedimentary rocks from the platform off western India were reviewed for their genesis and relationship with their ancient counter parts. Sub-marine cemented and vadose diagenetic limestones were recovered at different locations on the platform and, neomorphic limestones and caliche pisolites were recovered on the continental shelf south of the platform. Dolomites on the platform were primary and formed by microbial processes under hypersaline, sulphate-reducing conditions during the lowered sea levels. Aragonite ooids were formed from the mineralization of microbial filaments that enveloped their cortex portions. Phosphorites were found in organic-rich, aragonite muds on the continental slope adjacent to the platform and formed from the microbial mineralization of organic matter and replacement of carbonate by apatite during early diagenesis. Microbial processes thus played an important role in the formation of dolomites, ooids and phosphorites reported here and those in ancient deposits. Halimeda bioherms on the platform were grown luxuriantly from the nutrients brought by upwelling currents during the Late Pleistocene–Early Holocene sea level transgression and are similar to the Holocene–Recent deposits in the Indo-Pacific region. Lime muds were bio-detrital and formed primarily from the disintegration of Halimeda bioherms and carbonate skeletal on the platform and then exported to the slope. They resemble fine-grained limestones abundantly reported in ancient platforms. Thus, the different carbonate components on the platform are genetically related to their ancient ones and serve as Late Quaternary analogues for the ancient platform carbonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arvidson R S and Mackenzie F T 1999 The dolomite problem: control on precipitation kinetics by temperature and saturation state; Am. J. Sci. 299 257–288.

    Google Scholar 

  • Awramik S M, Margulis L and Barghoorn E S 1976 Evolutionary processes in the formation of stromatolites; In: Stromatolites (ed.) Walter M R, Amsterdam, Elsevier, Developments in Sedimentology 20 149–162.

  • Bard E, Hamelin B, Fairbanks R G and Zindler A 1990 Calibration of the \(^{14}\)C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados cores; Nature 345 405–410.

    Google Scholar 

  • Bathurst R G C 1975 Carbonate sediments and their diagenesis; Elsevier, Amsterdam, 658p.

    Google Scholar 

  • Baturin G N 1982 Phosphorites on the sea floor: Origin, composition and distribution; Dev. Sedimentol. 33, 345p.

    Google Scholar 

  • Basu D N, Banerjee A and Tamhane D M 1980 Source areas and migration trends of oil and gas in Bombay offshore basin, India; AAPG Bull. 64 209–220.

    Google Scholar 

  • Braga J C and Martin J M 1993 Halimeda bioherms in Messinian basinal sequences: Fossil analogues of modern Australian examples; Abstracts, International Symposium on Alpine Algae, University of Munich, Munich.

  • Braga J C, Martin J M and Riding R 2015 Internal structure of segment reefs: Halimeda algal mounds in the Mediterranean Miocene; Geology 24 35–38.

    Google Scholar 

  • Breheret J G 1991 Phosphatic concretions in black facies of the Aptian–Albianmarnes blues formation of the Vocontian basin (SE France) and at site DSDP 369: Evidence of benthic microbial activity; Cret. Res. 12 411–415.

    Google Scholar 

  • Burgess P M, Winefield P, Minzoni M and Elders C 2013 Methods for identification of isolated carbonate buildups from seismic reflection data; AAPG Bull. 97 1071–1098.

    Google Scholar 

  • Burnett W C 1977 Geochemistry and origin of phosphorite deposits from off Peru and Chile; GSA Bull. 88 813–823.

    Google Scholar 

  • Burnett W C and Riggs S R 1990 Phosphate deposits of the world: Neogene to modern phosphorites; Cambridge University Press, Cambridge, UK, 464p.

    Google Scholar 

  • Cook P J and Shergold J H 1986 Phosphate deposits of the world: Proterozoic and Cambrian phosphorites; Cambridge University Press, Cambridge, UK, 385p.

    Google Scholar 

  • Davies G R 1970 Carbonate bank sedimentation, Eastern Shark Bay, western Australia; In: Carbonate Sedimentation and Environments, Shark Bay Western Australia (eds) Logan B W, Davies G R, Read J F and Cebulski D E, AAPG Memoir 13 85–168.

  • Davies P J and Martin K 1976 Radial aragonite ooids, Lizard Island, Great Barrier Reef, Queensland, Australia; Geology 4 120–122.

    Google Scholar 

  • Davies P J, Bubela B and Ferguson J 1978 The formation of ooids; Sedimentology 25 703–730.

    Google Scholar 

  • Dix G R 2001 Origin of Sr-rich magnesian calcite mud in a Holocene pond basin (Lee Stocking Island, Bahamas); J. Sedim. Res. 71 167–175.

    Google Scholar 

  • Dix G R, James N P, Kyser T K, Bone Y and Collins L B 2005 Genesis and dispersal of carbonate mud relative to Late Quaternary sea level changes along a distally steepened carbonate ramp (Northwestern Shelf, Western Australia); J. Sedim. Res. 75 665–678.

    Google Scholar 

  • Duguid S M A, Kyser T K, James N P and Rankey E C 2010 Microbes and ooids; J. Sedim. Res. 80 236–251.

    Google Scholar 

  • Eberli G P 1991 Growth and demise of isolated carbonate platforms: Bahamian controversies; In: Controversies in Modern Geology, Academic Press, London, pp. 231–248.

    Google Scholar 

  • Eberli G P, Masaferro J L and Rick Sarg J F 2004 Seismic stratigraphic evolution of the Miopliocene-Pliocene Segitiga platform, East Indonesia: The origin, growth and demise of the isolated carbonate platform; AAPG Memoirs 81 309–328.

    Google Scholar 

  • Fabricius F 1977 Origin of marine ooids and grapestones; Acad. Des. Sci. Paris 7 1–113.

    Google Scholar 

  • Folk R L 1965 Some aspects of recrystallization in ancient limestones; In: Dolomitisation and limestone diagenesis: A symposium (eds) Pray L C and Murray P C, SEPM Spec. Publ. 13 14–48.

  • Folk R L and Lynch F L 2001 Organic matter, putative nanobacteria and the formation of ooids and hard grounds; Sedimentology 48 215–229.

    Google Scholar 

  • Follmi K B 1996 The phosphorous cycle, phosphogenesis and marine phosphate-rich deposits; Earth-Sci. Rev. 40 55–124.

    Google Scholar 

  • Freeman T 1962 Quiet water ooids from Laguna Madre, Texas; J. Sediment. Res. 32 475–483.

    Google Scholar 

  • Friedman G M, Amiel A J, Braun M and Miller D S 1973 Generation of carbonate particles and laminites in algal mats- example from sea-marginal hypersaline pool, Gulf of Aqaba, Red Sea; AAPG Bull. 57 541–557.

  • Fulthorpe C S and Schlanger S O 1989 Paleo-oceanographic and tectonic settings of Early Miocene reefs and associated carbonates of offshore Southeast Asia; AAPG Bull. 73 729–756.

  • Gillispie A L 2013 Organic matter preserved in modern ooids from Shark Bay and the Bahamas; MSc Thesis, Massachusetts Institute of Technology, MA, USA.

  • Gischler E and Zingeler D 2002 The origin of carbonate mud in isolated carbonate platforms of Belize, Central America; Int. J. Earth Sci. 91 1054–1070.

    Google Scholar 

  • Glenn C R, Follmi K B, Riggs S R, Baturin G N, Grimm K A, Trappe J, Abed A M, Galli-Olivier C, Garrison R E, Ilyin A, Jehl C, Rohrlich V, Sadaqah R, Schidlowski M, Sheldon R E and Siegmund H 1994 Phosphorus and phosphorites: sedimentology and environment of formation; Eclogae Geol. Helv. 87 747–788.

    Google Scholar 

  • Griffin K M and Awramik S M 1989 Gaint Bahamian stromatolites: A modern analog for what? In: Proceedings of the 4th symposium on the Geology of Bahamas, pp. 168–174.

  • Grotzinger J P and James N P 2000 Precambrian carbonates: Evolution and understanding; In: Carbonate sedimentation and diagenesis in the evolving Precambrian world (eds) Grotzinger J P and James N P, SEPM Spec. Publ. 67 1–18.

  • Halley R B, Harris P M and Hine A C 1983 Bank margin environments; In: Carbonate depositional environments (eds) Scholle P S, Behout G G and Moore C H, AAPG Memoir 33 463–506.

  • Hallock P and Schlager W 1986 Nutrient excess and the demise of coral reefs and carbonate platforms; Palaios 1 389–398.

    Google Scholar 

  • Hashimi N H, Nigam R, Nair R R and Rajagopalan G 1995 Holocene sea level fluctuations on western Indian margin: an update; J. Geol. Soc. India 46 157–162.

    Google Scholar 

  • Hardie L A 1987 Dolomitization: a critical view of some current views; J. Sed. Petrol. 57 166–183.

    Google Scholar 

  • Heyward A, Pinceratto E and Smith L D 1997 Big bank shoals of the Timor Sea: An environmental resource atlas; Australian Institute of Marine Science and BHP Petroleum, Townsville, Australia.

  • Hillis L 1997 Coralgal reefs from a calcareous green alga perspective and a first carbonate budget; In: Proceedings of the 8th International Coral Reef Symposium, pp. 761–766.

  • Hillis-Colinvaux L 1980 Ecology and taxonomy of Halimeda: Primary producer of coral reefs; Adv. Mar. Biol. 17 1–327.

    Google Scholar 

  • Hine A C, Hallock P, Harris M W, Mullins H T, Belknap D F and Jaap W C 1988 Halimeda bioherms along an open seaway: Miskito Channel, Nicaraguan Rise, SW Caribbean Sea; Coral Reefs 6 173–178.

    Google Scholar 

  • Illing L V 1954 Bahamian calcareous sands; AAPG Bull.  38 1–95.

    Google Scholar 

  • James N P, Bone Y and Kyser T 2005 Where has all the aragonite gone-Mineralogy of Holocene neritic cool water carbonates, southern Australia; J. Sedim. Res. 75 454–463.

    Google Scholar 

  • Jarvis I, Burnett W C, Nathan Y, Almbaydin F, Attia K M, Castro L N, Flicoteaux R, Hilmy M E, Husain V, Qutawna A A, Serjani A and Zanin Y N 1994 Phosphorite geochemistry: State-of-the-art and environmental concerns; Eclogae Geol. Helv. 7 643–700.

    Google Scholar 

  • Kazakov A V 1937 The phosphorite facies and the genesis of phosphorites: Geological investigations of agricultural ores; Scientific Institute of Fertilizers and Insecto-Fungicides Transactions 142 95–113.

    Google Scholar 

  • Kendall C G St C, Shinn G and Janson X 2007 Holocene cyanobacterial mats and lime muds: Links to middle east carbonate source rock potential; Search and Discovery Article, AAPG Annual Meeting, Long Beach, California, USA.

  • Kindler P K and Hearty P J 1996 Carbonate petrology as an indicator of climatic and sea level changes: New data from Bahamian Quaternary units; Sedimentology 43 381–399.

    Google Scholar 

  • Kirkland B L, Moore C H Jr and Dickson J A D 1993 Well preserved aragonite algae (Eugonophyllum U’doteaceae) from the Pennsylvanian Holder Formation, Sacramento Mountains, New Mexico; Palaios 8 111–120.

    Google Scholar 

  • Krajewski K P, Van Cappellen P, Trichet J, Kuhn O, Lucas J, Martin-Algarra A, Prevot L, Tewari V V, Gasper I, Knight R I and Lamboy M 1994 Biological processes and apatite formation in sedimentary environments; Eclogae Geol. Helv. 87 701–745.

    Google Scholar 

  • Kusumastuti A, Van Rensbergen P and Warren J K 2002 Seismic sequence analysis and reservoir potential of drowned Miocene carbonate platforms in the Madura Strait, East Java, Indonesia; AAPG Bull. 86 213–232.

    Google Scholar 

  • Kuznetsov V G 1997 Oil and gas in reef reservoirs in the former USSR; Petrol. Geosci. 3 65–71.

    Google Scholar 

  • Lamboy M 1990 Microstructure of a phosphatic crust from a Peruvian continental margin: phosphatized bacteria and associated phenomena; Oceanol. Acta 13 439–451.

    Google Scholar 

  • Land L S, Behrens E W and Frishman S A 1979 The ooids of Baffin bay, Texas; J. Sedim. Petrol. 49 1269–1278.

    Google Scholar 

  • Liddell W D, Ohlhorst S L and Boss S K 1988 The significance of Halimeda as a space-occupier and sediment-producer, 1–750 m, North Jamaica; In: Proceedings of the 6th International Coral Reef Symposium.

  • Logan B W, Harding J L, Ahr W M, Williams J D and Snead R G 1969 Late Quaternary carbonate sediments of Yucatan shelf, Mexico; In:Carbonate sediments and reefs, Yucatan Shelf, Mexico (ed.) Logan B W, American Association Petroleum Geologists, Tulsa, Okla, pp. 5–128.

    Google Scholar 

  • Longman M W 1980 Carbonate diagenetic textures from near surface diagenetic environments; AAPG Bull. 64 461–487.

    Google Scholar 

  • Loreau J-P and Purser B H 1973 Distribution and ultrastructure of Holocene ooids in the Persian Gulf; In: The Persian Gulf (ed.) Purser B H, Springer-Verlag, New York, pp. 279–328.

    Google Scholar 

  • Machel H G and Mountjoy E W 1986 Chemistry and environment of dolomitization – A reappraisal; Earth-Sci. Rev. 23 175–222.

    Google Scholar 

  • MacInyre I G 1977 Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama; J. Sedim. Petrol. 47 503–516.

    Google Scholar 

  • Maliva R G 1995 Recurrent neomorphic and cement microtextures from different diagenetic environments, Quaternary to Late Neogene carbonates, Great Bahama Bank; Sedim. Geol. 97 1–7.

    Google Scholar 

  • Mariotti G, O’Reilly S S, Winter A R, Neumann S A, Pruss S B, Bosak T, Klepac-cerag V, McDermott F and Summons R E 2015 Molecular evidence for a microbial role in ooid formation and preservation of molecular biosignatures in ancient oolite; Abstract B21C–0452, American Geophysical Union, Fall Meeting, San Francisco.

  • Marshall L F and Davies P J 1975 High-magnesium calcite ooids from the Great Barrier Reef; J. Sedim. Res. 45 285–291.

    Google Scholar 

  • Marshall J F and Davies P J 1988 Halimeda bioherms of the northern Great Barrier Reef; Coral Reefs 6 139–148.

    Google Scholar 

  • Meyers W J 1978 Carbonate cements: Their regional distribution and interpretation in Mississippian limestones of southwestern New Mexico; Sedimentology 25 371–400.

    Google Scholar 

  • Multer H G 1988 Growth rate, ultrastructure and sediment contribution of Halimeda incrassata and Halime damonile, Nonsuch and Falmouth Bays, Antigua, WI; Coral Reefs 6 179–186.

    Google Scholar 

  • Milliman J D 1967 Carbonate sedimentation on Hogsty Reef, A Bahamian atoll; J. Sedim. Petrol. 37 658–676.

    Google Scholar 

  • Milliman J D 1974 Marine carbonates; Springer-Verlag, Heidelberg, 375p.

    Google Scholar 

  • Milliman J D and Barretto H T 1975 Relict magnesium calcite ooids and subsidence of the Amazon shelf; Sedimentology 22 137–145.

    Google Scholar 

  • Mitchel J T and Land L S 1987 Modern marine dolomite cement in a north Jamaican fringing reef; Geology 15 557–560.

    Google Scholar 

  • Mullins H T and Rasch R F 1985 Sea floor phosphorites along the central California continental margin; Econ. Geol. 80 696–715.

    Google Scholar 

  • Naidu A S 1967 Radiocarbon date of an oolitic sand collected from the shelf off the east coast of India; Bull. Nat. Inst. Sci. India 38 467–471.

    Google Scholar 

  • Nair R R 1971 Beach rock and associated carbonate sediments on the Fifty Fathom Flat, a submarine terrace on the outer continental shelf of Bombay; Proc. Indian Acad. Sci. Sect. B 73 148–154.

    Google Scholar 

  • Nair R R 1975 Nature and origin of small scale topographic prominences on the western continental shelf of India; Indian J. Mar. Sci. 4 25–29.

    Google Scholar 

  • Nair R R 1985 Holocene phosphorites of the western continental shelf of India; Bull. Nat. Inst. Ocean India 18 273–279.

    Google Scholar 

  • Nair R R and Pylee A 1968 Size distribution and carbonate content of the sediments of the western shelf of India; Bull. Nat. Inst. Sci. India 38 411–420.

    Google Scholar 

  • Nair R R and Hashimi N H 1981 Mineralogy of the carbonate sediments western continental shelf of India; Mar. Geol. 41 309–319.

    Google Scholar 

  • Nair R R, Hashimi N H and Guptha M V S 1979 Holocene limestones of part of the western continental shelf of India; J. Geol. Soc. India 20 17–23.

    Google Scholar 

  • Neumann A C and Land L S 1975 Lime mud deposition and calcareous algae in the Bight of Abaco, Bahamas: A budget; J. Sedim. Petrol. 45 763–786.

    Google Scholar 

  • Newell N D, Purdy E G and Imbrie J 1960 Bahamian oolitic sand; J. Geol. 68 481–497.

    Google Scholar 

  • O’Brien G W, Harris, J R, Milnes, A R and Veeh H H 1981 Bacterial origin of eastern Australian continental margin phosphorites; Nature 294 442–444.

    Google Scholar 

  • O’Reilly S S, Mariotti G, Winter A R, Neumann S A, Matys E D, McDermott F, Pruss S B, Bosak T, Summons R E and Klepac-cerag V 2017 Molecular biosignatures reveal common benthic microbial sources of organic matter in ooids and grapestones from Pigeon Cay, The Bahamas; Geobiology 15 112–130.

    Google Scholar 

  • Orme G R, Flood P G and Sargent G E G 1978 Sedimentation trends in the lee of the outer (ribbon) reefs, northern region of the Great Barrier Reef Province; Phil. Trans. Roy. Soc. London Ser. A 291 85–99.

    Google Scholar 

  • Patterson R J and Kinsman D J 1982 Formation of diagenetic dolomite in coastal sabkha along Persian Gulf; AAPG Bull. 66 28–43.

    Google Scholar 

  • Pilkey O H, Schnitker D, Pevear D R 1966 Oolites on the Georgia continental shelf edge; J. Sedim. Petrol. 36 462–467.

    Google Scholar 

  • Pomar L and Hallock P 2008 Carbonate factories: A conundrum of sedimentary geology; Earth-Sci. Rev. 87 134–169.

    Google Scholar 

  • Rao K L 1975 India water wealth; Orient Longman, New Delhi, 255p.

    Google Scholar 

  • Rao V P 1990 On the occurrence of caliche pisolites from the western continental of India; Sedim. Geol. 69 13–19.

    Google Scholar 

  • Rao V P and Lamboy M 1995 Phosphorites from the Oman margin, ODP Leg 117; Oceanol. Acta. 18 289–307.

    Google Scholar 

  • Rao V P and Lamboy M 1996 Genesis of apatite in the phosphatized limestones of the western continental shelf of India; Mar. Geol. 136 41–56.

    Google Scholar 

  • Rao V P and Nair R R 1988 Microbial origin of phosphorites of the western continental shelf of India; Mar. Geol. 84 105–110.

    Google Scholar 

  • Rao V P and Nair R R 1992 A re-evaluation of climatic conditions during the Pleistocene and Holocene from the western continental shelf of India: Evidences from petrography of limestones; In: Oceanography of the Indian Ocean (ed.) Desai B N, Acaemic Press, India, pp. 423–438.

    Google Scholar 

  • Rao V P and Thamban M 1997 Dune associated calcretes, rhizoliths and paleosols from the western continental shelf of India; J. Geol. Soc. India 49 207–306.

    Google Scholar 

  • Rao V P and Veerayya M 1996 Submarine terrace limestones from the continental slope off Saurashtra–Bombay: Evidence of Late Quaternary neotectonic activity; Curr. Sci. 71 36–41.

    Google Scholar 

  • Rao V P and Wagle B G 1997 Geomorphology and surficial geology of the western continental margin of India: A review; Curr. Sci. 73 330–350.

    Google Scholar 

  • Rao V P and Milliman J D 2017 Relict ooids off northwestern India: Inferences on their genesis and Late Quaternary sea level; Sedim. Geol. 358 44–50.

    Google Scholar 

  • Rao V P, Lamboy M and Dupeuble P A 1993 Verdine and other associated authigenic (glaucony, phosphate) facies from the sediments of the southwestern continental margin of India; Mar. Geol. 111 133–158.

    Google Scholar 

  • Rao V P, Anil Kumar A, Naqvi S W A, Chivas A R, Sekar B and Kessarkar P M 2012 Lime muds and their genesis off-northwestern India during the Late Quaternary; J. Earth Syst. Sci. 121 769–779.

    Google Scholar 

  • Rao V P, Kessarkar P M, Krumbein W E, Krajewski K P and Schneider R J 2003a Microbial dolomite crusts from the carbonate platform off western India; Sedimentology 50 819–830.

    Google Scholar 

  • Rao V P, Rajagopalan G, Vora K H and Almeida F 2003b Late Quaternary sea level and environmental changes from relic carbonate deposits of the western margin of India; Proc. Indian Acad. Sci. 112 1–25.

    Google Scholar 

  • Rao V P, Montaggionni L, Vora K H, Almeida F, Rao K M and Rajagopalan G 2003c Significance of relict carbonate deposits along the central and southwestern margin of India for environmental and sea level changes; Sedim. Geol. 159 95–111.

    Google Scholar 

  • Rao V P, Veerayya M, Nair R R, Dupeuble P A and Lamboy M 1994 Late Quaternary Halimeda bioherms and aragonitic faecal pellet-dominated sediments on the carbonate platform of the western continental shelf of India; Mar. Geol. 121 293–315.

    Google Scholar 

  • Rao V P, Veerayya M, Thamban M and Wagle B G 1996 Evidences of neotectonic activity and sea-level changes along the western continental margin of India; Curr. Sci. 71 213–219.

    Google Scholar 

  • Rao V P, Natarajan R, Parthiban G and Mascarenhas A 1990 Phosphatised limestones and associated sediments from the western continental shelf of India; Mar. Geol. 95 17–29.

    Google Scholar 

  • Rao V P, Naqvi S W A, Kumar M D, Cardinal D, Michard A, Borole D V, Jacobs E and Natarajan R 2000a A comparative study of Pleistocene phosphorites from the continental slope off western India; Sedimentology 47 945–960.

    Google Scholar 

  • Rao V P, Rao K M and Raju D S N 2000b Quaternary phosphate stromatolites from the continental margin off Chennai, Southeast coast of India: Analogs of ancient phosphate stromatolites; J. Sedim. Res. 70 1205–1217.

    Google Scholar 

  • Rao V P, Mahale V P and Chakraborty B 2018 Bathymetry and sediments on the carbonate platform off western India: Significance of Halimeda bioherms in carbonate sedimentation; J. Earth Syst. Sci. 127(8) 106.

    Google Scholar 

  • Reitner J, Arp G, Thiel V, Gautret P, Galling U and Michaelis W 1997 Organic matter in Great Salt Lake ooids (Utah, USA): First approach to a formation via organic matrices; Facies 36 210–219.

    Google Scholar 

  • Roberts H H, Phipps C V and Effendi L 1987 Morphology of large Halimeda bioherms, eastern Java Sea (Indonesia): A side-scan sonar study; Geo-Mar. Lett. 7 7–14.

    Google Scholar 

  • Robbins L L and Blackwelder P L 1992 Origin of whitings: A biologically induced non-skeletal phenomenon; Geology 20 464–467.

    Google Scholar 

  • Rosen M R and Coshell L 1992 A new location of Holocene dolomite formation, Lake Hayward, Western Australia; Sedimentology 39 1062–1074.

    Google Scholar 

  • Rusnak G A 1960 Some observations of recent oolites; J. Sedim. Petrol. 30 471–480.

    Google Scholar 

  • Sandberg P A 1975 New interpretation of Great salt Lake ooids and of ancient non-skeletal carbonate mineralogy; Sedimentology 22 497–537.

    Google Scholar 

  • Schoeder J H 1973 Submarine and vadose cements in Pleistocene Bermuda Reef rocks; Sedim. Geol. 10 179–204.

    Google Scholar 

  • Searle D E and Flood P G 1988 Halimeda bioherms of the Swain Reefs- southern Great Barrier Reef; In: Proceedings of the 6th International Coral Reef Symposium, 92p.

  • Shinn E A, Steinen R P, Lidz B H and Swart P K 1989 Whitings: A sedimentological dilemma; J. Sed. Petrol. 59 147–161.

    Google Scholar 

  • Simone L 1980 Ooids: A review; Earth-Sci. Rev. 16 319–355.

    Google Scholar 

  • Soudry D and Lewy Z 1988 Microbially influenced formation of phosphate nodules and megafossil moulds (Negev, southern Israel); Palaeogeogr. Palaeoclimatol. Palaeoecol. 64 15–34.

    Google Scholar 

  • Soudry D and Panczer G 1994 Stromatolitic phosphorites in the Eocene of the Negev (Southern Israel); In: Phanerozoic Stromatolites II (eds) Bertrand-Sarfati J and Monty C L V, Springer Science and Business Media, Dordrecht, The Netherlands, pp. 255–276.

  • Southgate P N 1986 Cambrian phoscrete profiles, coated grains, and microbial processes in phosphogenesis: Georgina Basin, Australia; J. Sedim. Petrol. 56 429–441.

    Google Scholar 

  • Stockman K W, Ginsburg R N and Shinn E A 1967 The production of lime mud by algae in south Florida; J. Sedim. Petrol. 37 633–648.

    Google Scholar 

  • Subbarao M 1964 Some aspects of continental shelf sediments off the east coast of India; Mar. Geol. 1 59–87.

    Google Scholar 

  • Summons R E, Bird L R, Gillispie A L, Pruss S B, Robets M and Sessions A L 2013 Lipid biomarkers in ooids from different locations and ages: Evidence for a common bacterial flora; Geobiology 11(5) 420–436.

    Google Scholar 

  • Trichet J and Desfarge C 1975 Non-biologically supported organomineralization; Bull. Inst. Ocean de Monaco 14 203–236.

    Google Scholar 

  • Valdiya K S 1972 Origin of phosphorite of the Late Precambrian Gangolihat dolomite of Pithoragarh, Kumaun Himalaya; Sedimentology 19 115–128.

    Google Scholar 

  • Van Tuyl F M 1916 The present status of dolomite problem; Science 44 688–690.

    Google Scholar 

  • Vasconcelos C and McKenzie J A 1997 Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil); J. Sedim. Res. 67 378–390.

    Google Scholar 

  • Vasconcelos C, McKenzie J A, Bernasconi S, Grujic D and Tien A J 1995 Microbial mediation as a possible mechanism for dolomite formation; Nature 377 220–222.

    Google Scholar 

  • Von der Borch C C and Lock D 1979 Geological significance of Coorong dolomites; Sedimentology 26 813–824.

    Google Scholar 

  • Von Stackelberg U 1972 Faziesverteilung in sedimentendes Indich- Pakistanischen Kontinental-Randes (Arabisches Meer) Meteor Forschungsgebn; Reiche C9 1–73.

    Google Scholar 

  • Vora K H and Almeida F 1990 Submerged reef systems on the central western continental shelf of India; Mar. Geol. 91 255–262.

    Google Scholar 

  • Warthmannn R, Lith Y V, Vasconcelos C, McKenzie J A and Karpoff A M 2000 Bacterially induced dolomite precipitation in anoxic culture experiments; Geology 12 1091–1094.

    Google Scholar 

  • Wells A J and Illing L V 1964 Present day precipitation of calcium carbonate in the Persian Gulf; Dev. Sedimentol. 1 429–435.

    Google Scholar 

  • Wiedicke M, Kudras H R and Hubscher C 1999 Oolitic beach barriers of the last glacial sea-level low stand at the outer Bengal shelf; Mar. Geol. 157 7–18.

    Google Scholar 

  • Wilson J L 1975 Carbonate facies in geological history; Springer-Verlag, New York, 471p.

    Google Scholar 

  • Wright D T 1997 An organogenic origin of widespread dolomite in the Cambria Eilean Dubh Formation, northwestern Scotland; J. Sedim. Petrol. 67 54–64.

    Google Scholar 

  • Wright D T 2000 Benthic microbial communities and dolomite formation in marine and lacustrine environments- a new dolomite model; In: Marine authigenesis from global to microbial (eds) Glenn C R, Lucas J and Prevot L, SEPM Spec. Publ. 66 7–20.

  • Xu H, Zhao X, Eberli G P, Liu X, Zhu Y, Cai Y, Luo W, Yan B G, Zhang B, Wei K and Shi J 2015 Biogenic carbonate formation and sedimentation in the Xisha Islands: evidences from living Halimeda; Acta Oceanol. Sin. 34 62–73.

    Google Scholar 

  • Yates K K and Robbins L A 1999 Radioisotope tracer studies of inorganic carbon and Ca in microbially derived \(\text{ CaCO }_{{3}}\); Geochim. Cosmochim. Acta 63 129–136.

    Google Scholar 

Download references

Acknowledgements

We wish to thank the Vice-Chancellor, Vignan’s University for facilities and encouragements. V P Rao wishes to thank senior colleagues R R Nair, M Veerayya and B G Wagle and Ph.D students M Thamban, Pratima Kessarkar and A Anil Kumar, who shared VPR’s research work on carbonates of the platform at the CSIR–National Institute of Oceanography, Goa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Purnachandra Rao.

Additional information

Corresponding editor: N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, V.P., Gopinathan, P. Late Quaternary sediments on the carbonate platform off western India: Analogues of ancient platform carbonates. J Earth Syst Sci 128, 80 (2019). https://doi.org/10.1007/s12040-019-1112-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1112-y

Keywords

Navigation