Investigating suspended-sediment transport in a shallow lake using a three-dimensional hydrodynamic and sediment model

Abstract

A three-dimensional, unstructured-grid hydrodynamic and suspended-sediment transport model was developed to simulate the temporal and spatial variations of suspended sediment and was applied to the subtropical subalpine Tsuei-Feng Lake (TFL) of Taiwan. The model was validated with measured water level and suspended-sediment concentration in 2009, 2010 and 2011. The overall model simulation results are in quantitative agreement with the observational data. The validated model was then applied to explore the most important parameter that affects the suspended-sediment concentration and to investigate the effect of wind stress on the mean current and suspended-sediment distribution in this shallow lake. Modelling results of the sensitivity analysis revealed that the settling velocity is a crucial parameter and the erosion rate is less important in the suspended-sediment transport model. Remarkable lake circulation was found based on the strength of wind speed and wind direction. A strong wind would result in a higher mean current in the top layer and suspended-sediment distribution in the top and bottom layers. This study demonstrated that wind stress played a significant influence on mean circulation and suspended-sediment transport in a shallow lake.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. APHA 1995 Standard Methods for the Examination of Water and Wastewater; 19th edn, American Public Health Association, Washington, DC, USA.

  2. Burban P Y, Xu Y J, Mcnell J and Lick W 1990 Settling speeds of flocs in fresh water and seawater; J. Geophys. Res. 95(C10) 18213–18220.

    Article  Google Scholar 

  3. Cardenas M P, Schwab D J, Eadie B J, Hawley N and Lesht B M 2005 Sediment transport model validation in Lake Michigan; J. Great Lakes Res. 31(4) 373–385.

    Article  Google Scholar 

  4. Chalov S R, Jarsjo J, Kasimov N S, Romanchenko A O, Pietron J, Thorslund J and Promakhova E V 2015 Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia; Environ. Earth Sci. 73(2) 663–680.

    Article  Google Scholar 

  5. Chao X, Jia Y, Shields Jr F D, Wang S S Y and Cooper C M 2007 Numerical modeling of water quality and sediment related processes; Ecol. Model. 201 385–297.

    Article  Google Scholar 

  6. Chao X, Jia Y, Shields Jr F D, Wang S S Y and Cooper C M 2008 Three-dimensional numerical modeling of cohesive sediment transport and wind wave impact in a shallow oxbow lake; Adv. Water Resour. 31(7) 1004–1014.

    Article  Google Scholar 

  7. Chen W B, Liu W C, Hsu M H and Hwang C C 2015 Modelling investigation of suspended sediment in a tidal estuary using a three-dimensional model; Appl. Math. Model. 39(9) 2570–2586.

    Article  Google Scholar 

  8. Cheng W Y 2010 Using water quality variables to establish light attenuation model in subtropic subalpine Yuan-Yang Lake and Tsuei-Feng Lake; Master thesis of Department of Civil and Disaster Prevention Engineering, National United University, Taiwan.

  9. Chung E G, Bombardelli F A and Schladow S G 2009 Modeling linkages between sediment resuspension and water quality in a shallow, eutrophic, wind-exposed lake; Ecol. Model. 220 1251–1265.

    Article  Google Scholar 

  10. Clarke G K C, Bush A B G and Bush J W M 2009 Freshwater discharge, sediment transport, and modeled climate impacts on the final discharge of glacial Lake Agassiz; J. Clim. 22(8) 2161–2180.

    Article  Google Scholar 

  11. Cozar A, Galvez J A, Hull A, Garcia C M and Loiselle S A 2005 Sediment resuspension by wind in a shallow lake of Esteros del Ibera (Argentina): A model based on turbidimetry; Ecol. Model. 186 63–76.

    Article  Google Scholar 

  12. DiToro D M 2001 Sediment Flux Modeling; Wiley & Sons, Inc.

    Google Scholar 

  13. Filistovic V, Maceika E, Tarasiuk N, Lukisence B, Konstantinova M, Buivydas S, Koviazine E and Puzas A 2015 Model of non-equilibrium multiphase contaminant transport in lake water-sediment system; Water Air Soil Poll. 226(6) 202.

    Article  Google Scholar 

  14. Gbah M B, Rao Y R and Murthy R C 2001 Turbulent exchange characteristics in the hypolimnion layer of Lake Ontario; Nordic Hydrol32(1) 13–28.

    Article  Google Scholar 

  15. Hawley N, Harris C K, Lesht B M and Clites A H 2009 Sensitivity of a sediment transport model for Lake Michigan; J. Great Lakes Res. 35(4) 560–576.

    Article  Google Scholar 

  16. Horne A J and Goldman C R 1994 Limnology; McGraw-Hill Higher Education.

    Google Scholar 

  17. Houwing E R and Rijn L C 1998 In situ erosion flume (ISEF): Determination of bed-shear stress and erosion of a kaolinite bed; J. Sea Res. 39(3) 243–253.

    Article  Google Scholar 

  18. James R T, Martin J, Wool T and Wang P F 1997 A sediment resuspension and water quality model of lake Okeechobee; J. Am. Water Resour. As. 33(3) 661–680.

    Article  Google Scholar 

  19. Ji Z G, Hamrick J H and Pagenkopf J 2002 Sediment and metals in shallow river; J. Environ. Eng. ASCE 128(2) 105–119.

    Article  Google Scholar 

  20. Jin K R and Ji Z G 2004 Case study: Modeling of sediment transport and wind-wave impact in lake Okeechobee; J. Hydraul. Eng. ASCE 130(11) 1055–1067.

    Article  Google Scholar 

  21. Kessarkar P M, Purnachandra R V, Shynu R, Ahmad I M, Mehra P, Michael G S and Sundar D 2009 Wind-driven estuarine turbidity maximum in Mandovi Estuary, central west coast of India; J. Earth Syst. Sci. 118 369.

    Article  Google Scholar 

  22. Kimura N, Liu W C, Chiu C Y and Kratz T K 2014 Assessing the effects of severe rainstorm-induced mixing on a subtropical, subalpine lake; Environ. Monit. Assess. 186 3091–3114.

    Article  Google Scholar 

  23. Kjaran S P, Holm S L and Myer E M 2004 Lake circulation and sediment transport in lake Myvatn; Aquat. Ecol. 38(2) 145–162.

    Article  Google Scholar 

  24. Krone R B 1962 Flume Studies on the Transport of Sediment in Estuarine Shoaling Processes, Hydraulic Engineering Laboratory, University of California, Berkeley.

    Google Scholar 

  25. Lee C, Schwab D J and Hawley N 2005 Sensitivity analysis of sediment resuspension parameters in coastal area of southern lake Michigan; J. Geophys. Res. 110 C03004.

    Google Scholar 

  26. Lee C, Schwab D J, Beletsky D, Stroud J and Lesht B 2007 Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1988 episodic events in southern lake Michigan; J. Geophys. Res. 112 C02018.

    Google Scholar 

  27. Li Y and Mehta A J 1998 Assessment of hindered settling of fluid mudlike suspensions; J. Hydraul. Eng. ASCE 124(2) 176–178.

    Article  Google Scholar 

  28. Lin J and Kuo A Y 2003 A model study of turbidity maximum in the York River estuary, Virginia; Estuaries 26(5) 1269–1280.

    Article  Google Scholar 

  29. Liu W C 2005 Modeling the influence of settling velocity on cohesive sediment transport in Tanshui river estuary; Environ. Geol. 47(4) 535–546.

    Article  Google Scholar 

  30. Liu W C, Chan W T and Tsai D W 2016 Three-dimensional modeling of suspended sediment transport in a subalpine lake; Environ. Earth Sci. 75 173.

    Article  Google Scholar 

  31. Lou J, Schwab D J, Beletsky D and Hawley N 2000 A model of sediment resuspension and transport dynamics in southern Lake Michigan; J. Geophys. Res. 105(C3) 6591–6610.

    Article  Google Scholar 

  32. Lv C, Zhang F, Liu Z, Hao S and Wu Z 2013 Three-dimensional numerical simulation of sediment transport in lake Tai based on EFDC model; J. Food Agri. Environ. 11(2) 1343–1348.

    Google Scholar 

  33. Matty J M, Anderson J B and Dunbar R B 1987 Suspended sediment transport, sedimentation, and resuspension in lake Houston, Taxes: Implications for water quality; Environ. Geol. 10(3) 175–186.

    Google Scholar 

  34. Mehta A J and Partheniades E 1975 An investigation of the depositional properties of flocculated fine sediment; J. Hydraul. Res. 13(4) 361–381.

    Article  Google Scholar 

  35. Mellor G L and Yamada T 1982 Development of a turbulence closure model for geophysical fluid problems; Rev. Geophys. 20(4) 851–875.

    Article  Google Scholar 

  36. Partheniades E 1965 Erosion and deposition of cohesive soils; J. Hydraul. Div. ASCE 91(1) 105–139.

    Google Scholar 

  37. Podsetchine V and Huttula T 1994 Modeling sedimentation and resuspension in lake; Water Pollut. Res. J. Canada 29 309–342.

    Article  Google Scholar 

  38. Pond S and Pickard G L 1998 Introductory Dynamical Oceanography; Butterworth-Heinemann.

    Google Scholar 

  39. Ramakrishnan R and Rajawat A S 2012 Simulation of suspended sediment transport initialized with satellite derived suspended sediment concentrations; J. Earth Syst. Sci. 121(5) 1201–1213.

    Article  Google Scholar 

  40. Rodi W 1984 Turbulence Models and Their Applications in Hydraulics: A State of the Art Review; International Association for Hydraulics Research, Delft, The Netherlands.

    Google Scholar 

  41. Sanford L P 1992 New sedimentation, resuspension and burial; Limnol. Oceanogr. 37(6) 1164–1178.

    Article  Google Scholar 

  42. Scheon J, Stretch D and Tirok K 2014 Wind-driven circulation patterns in shallow estuarine lake: St Lucia, South Africa; Estuar. Coast. Shelf Sci. 146 49–59.

    Article  Google Scholar 

  43. Shchepetkin A F and Mcwilliam J C 2005 The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate ocean model; Ocean. Model. 9(4) 347–404.

    Article  Google Scholar 

  44. Stanev E V, Brink-Spalink G and Wolff J O 2007 Sediment dynamics in tidally dominated environments controlled by transport and turbulence: A case study for the East Frisian Wadden Sea; J. Geophys. Res. 112 C04018.

    Article  Google Scholar 

  45. Stroud J R, Lesht B M, Schwab D J, Beletsky D and Stein M L 2009 Assimilation of satellite imagines into a sediment transport of Lake Michigan; Water Resour. Res. 45 W02419.

    Article  Google Scholar 

  46. Thomann R V and Mueller J A 1987 Principles of Surface Water Quality Modeling and Control; Harper Collins Publishers, Inc., New York.

    Google Scholar 

  47. Thorn M F C 1981 Physical processes of siltation in tidal channels; In: Proceedings of Hydraulic Modelling Applied to Maritime Engineering Problems, ICE, London, pp. 47–55.

  48. Umlauf L and Buchard H 2003 A generic length-scale equation for geophysical turbulence models; J. Mar. Res. 61(2) 235–265.

    Article  Google Scholar 

  49. Wang X H, Pinardi N and Malacic V 2007 Sediment transport and resuspension due to combined motion of wave and current in the northern Adriatic Sea during a Bora event in January 2001: A numerical study; Cont. Shelf Res. 27(5) 613–633.

    Article  Google Scholar 

  50. Wang C, Shen C, Wang P F, Qian J, Hou J and Liu J J 2013 Modeling of sediment and heavy metal transport in Taihu lake, China; J. Hydrodyn. 25(3) 379–387.

    Article  Google Scholar 

  51. Wang H, Zhang Z Z, Song D P, Zhou Y Y and Liu X D 2015 Water and sediment transport mechanisms in a larger liver-connected lake; Water Environ. J. 29(3) 391–401.

    Article  Google Scholar 

  52. Warner J C, Butman B and Dalyander P S 2008 Storm-driven sediment transport in Massachusetts Bay; Cont. Shelf Res. 28(2) 257–282.

    Article  Google Scholar 

  53. Wilcox D C 1998 Reassessment of scale determining equation for advance turbulence models; AIAA J. 26(11) 1299–1310.

    Article  Google Scholar 

  54. Young S M and Ishiga H 2014 Environmental change of the fluvial-estuary system in relation to Arase Dam removal of the Yatsushiro tidal flat, SW Kyushu, Japan; Environ. Earth Sci. 72(7) 2301–2314.

    Article  Google Scholar 

  55. Zhang Y L and Baptista A M 2008 SELFE: A semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation; Ocean Model. 21(3–4) 71–96.

    Article  Google Scholar 

  56. Zhang P, Chen X L, Lu J Z and Zhang W 2015 Assimilation of remote sensing observations into a sediment transport model of China’s large freshwater lake: Spatial and temporal effects; Environ. Sci. Pollut. Res. 22(23) 18779–18792.

    Article  Google Scholar 

  57. Ziegler C K and Nisbet B S 1995 Long-term simulation of fine-grained sediment transport in large reservoir; J. Hydraul. Eng. ASCE 121(11) 773–781.

    Article  Google Scholar 

  58. Zouabi-Aloui B and Gueddari M 2014 Two-dimensional modelling of hydrodynamics and water quality of a stratified dam reservoir in the southern side of the Mediterranean Sea; Environ. Earth Sci. 72(8) 3037–3051.

    Article  Google Scholar 

Download references

Acknowledgements

This research was founded by the Academia Sinica, Taiwan (No. AS-103-TP-B15) and the Ministry of Science and Technology, Taiwan (MOST 105-2625-M-865-002). The financial support was greatly appreciated. The authors also thank Dr. W.B. Chen of the National Science and Technology Centre for Disaster Reduction (NCDR), for providing the suspended-sediment transport model. The authors acknowledge anonymous reviewers for their useful comments and suggestions in improving the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wen-Cheng Liu.

Additional information

Corresponding editor: Rajib Maity

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Liu, H. & Chiu, C. Investigating suspended-sediment transport in a shallow lake using a three-dimensional hydrodynamic and sediment model. J Earth Syst Sci 128, 29 (2019). https://doi.org/10.1007/s12040-018-1063-8

Download citation

Keywords

  • Suspended sediment
  • hydrodynamics
  • numerical model
  • wind-driven current
  • Tsuei-Feng Lake