Abstract
The Dongargarh Supergroup along with the basal Amgaon Gneissic Complex constitutes the northwestern part of the central Indian Bastar craton. In the present study, we report a new finding of a boninite dyke intruded in the Amgaon gneisses of this area. The dyke composed of mainly pyroxenes, amphiboles and subordinate amount of plagioclase. The higher contents of \(\hbox {SiO}_{2}\) (51–54 wt.%), MgO (12–14 wt.%), Ni (375–473 ppm), Cr (1416–1580 ppm) and very low \(\hbox {TiO}_{2}\) (0.2–0.4 wt.%) are consistent with the boninite nature of the dyke as well as the unevolved primary nature of the source magma. The extraordinarily high CaO content (15.97–17.7 wt.%) with higher \(\hbox {CaO/Al}_{2}\hbox {O}_{3}\) (3.13–3.96) ratios classifies it as high-Ca boninite. The trace element ratios including Zr/Ti, Ti/V, Ti/Sc and Ti/Yb further show its geochemical similarity with the Archaean boninite. The dyke also shows negative high-field strength element (Nb, Ta and Ti) anomalies which are the characteristics of the boninite rocks reported elsewhere and along with the enriched light rare earth element pattern, it shows more affinity particularly with the northern Bastar boninite dyke. The mineralogical and geochemical similarities of the boninite dykes from the Bastar craton indicate a widespread boninitic event during the Palaeoproterozoic having a similar origin. These boninite dykes indicate the preservation of subduction-related signatures in the lithospheric mantle beneath the Bastar craton at the time of its evolution or may be during the convergence of the Bastar and Bundelkhand cratons.
This is a preview of subscription content, access via your institution.










References
Arndt N T, Brügmann G E, Lenhert K, Chappel B W and Chauvel C 1987 Geochemistry, petrogenesis and tectonic environment of Circum-Superior Belt basalts, Canada; In: Geochemistry and Mineralisation of Proterozoic Volcanic Suites (eds) Pharaoh T C, Beckinsdale R D and Rickard D, Blackwell, London.
Asthana D, Dash M R, Pophare A M and Khare S K 1996 Interstratified low-Ti and high-Ti volcanics in the arc-related Khairagarh Group of central India; Curr. Sci. 71 304–306.
Asthana D, Khare S K, Pophare A M and Dash M R 1997 Comments on – Geochemistry of the Dongargarh volcanic rocks, central India: Implications for the Precambrian mantle; Precamb. Res. 84 105–107.
Asthana D, Kumar H, Balakrishnan S, Xia Q and Feng M 2016 An early cretaceous analogue of the \(\sim {2.5}\) Ga Malanjkhand porphyry Cu deposit, central India; Ore. Geol. Rev. 72 1197–1212.
Asthana D, Kumar S, Vind A K, Zehra F, Kumar H and Pophare A M 2017 Geochemical fingerprinting of \(\sim 2.5\) Ga forearc-arc-backarc related magmatic suites in the Bastar craton, central India; J. Asian Earth Sci., https://doi.org/10.1016/j.jseaes.2017.10.006.
Beccaluva L and Serri G 1988 Boninitic and low-Ti subduction-related lavas from intraoceanic arc-backarc systems and low-Ti ophiolites: A reappraisal of their petrogenesis and original tectonic setting; Tectonophys. 146 291–315.
Bedard J H 1999 Petrogenesis of Boninites from the Betts Cove Ophiolite, Newfoundland, Canada: Identification of subducted source components; J. Petrol. 40(12) 1853–1889.
Cameron W E, McCulloch M T and Walker D A 1983 Boninite petrogenesis: Chemical and Nd–Sr isotopic constraints; Earth Planet. Sci. Lett. 65 75–89.
Chalapathi Rao N V and Srivastava R K 2009 A new find of boninite dyke from the Paleoproterozoic Dongargarh Supergroup: Inference for a fossil subduction zone in the Archean of the Bastar craton, central India; J. Mineral. Geochem. 186(3) 271–282.
Chaudhuri A K, Saha D, Deb G K, Deb S P, Mukherjee M K and Ghosh G 2002 The Purana basins of southern cratonic provinces of India a case for Mesoproterozoic fossil rifts; Gondwana Res. 5 23–33.
Condie K C 1997 Sources of Proterozoic mafic dyke swarms: Constraints from Th/Ta and La/Yb ratios; Precamb. Res. 81 3–14.
Crawford A J, Falloon T J and Green D H 1989 Classification, petrogenesis and tectonic setting of boninites; In: Boninites and Related Rocks (ed.) Crawford A J, Unwin Hyman, London, pp. 1–49.
Crookshank H 1963 Geology of southern Bastar and Jeypore from the Bailadila range to the Eastern Ghats; Geol. Surv. India Memoir 87 150.
Das P, Das K, Chakraborty P P and Balakrishnan S 2011 1420 Ma diabasic intrusives from the Mesoproterozoic Singhora Group, Chhattisgarh Supergroup, India: Implications towards non-plume intrusive activity; J. Earth Syst. Sci. 120 223–236.
Divakara Rao V, Narayana B L, Rama Rao P, Murthy N N, Subba Rao M V, Mallikharjuna Rao J and Reddy G L N 2000 Precambrian acid volcanism in central India – Geochemistry and origin; Gondwana Res. 3 215–226.
Falloon T J and Danyushevsky L V 2000 Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and \(\text{ H }_{2}\text{ O }\) undersaturated conditions: Implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting; J. Petrol. 41 257–283.
Falloon T J, Danyushevsky L V, Crawford T J, Maas R, Woodhead J D, Eggins S M, Bloomer S H, Wright D J, Zlobin S K and Stacey A R 2007 Multiple mantle plume components involved in the petrogenesis of subduction-related lavas from the northern termination of the Tonga Arc and northern Lau Basin: Evidence from the geochemistry of arc and backarc submarine volcanics; Geochem. Geophys. Geosyst., https://doi.org/10.1029/2007GC001619.
Falloon T J, Danyushevsky L V, Crawford A J, Meffre S, Woodhead J D and Bloomer S H 2008 Boninites and Adakites from the northern termination of the Tonga Trench: Implications for Adakite Petrogenesis; J. Petrol. 49 697–715.
French J E, Heaman L M, Chacko T and Srivastava R K 2008 1891–1883 Ma Southern Bastar–Cuddapah mafic igneous events, India: A newly recognized large igneous province; Precamb. Res. 160 308–322.
Ganguly S, Manikyamba C, Saha A, Lingadevaru M, Santosh M, Rambabu S, Khelen A C, Purushottam D and Linga D 2016 Geochemical characteristics of gold bearing boninites and banded iron formations from Shimoga greenstone belt, India: Implications for gold genesis and hydrothermal processes in diverse tectonic settings; Ore. Geol. Rev. 73 82–89.
Gautam G C and Srivastava R K 2011 Petrology, geochemistry and petrogenesis of Early Precambrian mafic dyke swarm from Dondi–Bhanupratappur–Keshkal, Central Bastar craton, India; In: Dyke Swarms: Keys for Geodynamic Interpretation (ed.) Srivastava R K, Springer-Verlag, Heidelberg, pp. 203–218.
Green D H and Falloon T J 1998 Pyrolite: A Ringwood concept and its current expression; In: The Earth’s Mantle: Composition, Structure and Evolution (ed.) Jackson I, Cambridge University Press, Cambridge, pp. 311–378.
Green T H and Pearson N J 1986 Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P–T; Chem. Geol. 54 185–201.
Hall R P and Hughes D J 1990 Precambrian mafic dykes of southern Greenland; In: Mafic Dykes and Emplacement Mechanisms (eds) Parker A J, Rickwood D H, Tucker D H and Balkema A A, Rotterdam, pp. 481–495.
Hickey R L and Frey F A 1982 Geochemical characteristics of boninitic series volcanics: Implications for their source; Geochim. Cosmochim. Acta 46 2099–2115.
Hussain F, Mondal M E A and Ahmad T 2004 Geodynamic evolution and crustal growth of the central Indian shield: Evidence from geochemistry of gneisses and granitoids; J. Earth Syst. Sci. 113 699–714.
Hussain M F, Ahmad T and Mondal M E A 2008 Geochemistry of the Precambrian MAFIC DYKE SWARMS of the central and northeastern parts of Bastar Craton, central India: Constraints on their enrichment processes; In: Indian Dykes: Geochemistry, Geophysics and Geochronology (eds) Srivastava R K, Sivaji C and Chalapathi Rao N V, Narosa Publishing House Pvt. Ltd., New Delhi, pp. 397–412.
Krishnamurthy P, Chaki A, Pandey B K, Chimote J S and Singh S N 1988 Geochronology of the granite-rhyolite suite of the Dongargarh Supergroup, central India; In: Fourth National Symposium on Mass Spectrometry, Indian Institute of Science, Bangalore, EPS-2/1-3.
Krishnamurthy P, Sinha D K, Rai A K, Seth D K and Singh S N 1990 Magmatic rocks of the Dongargarh supergroup, central India – Their petrological evolution and implications on metallogeny; Geol. Surv. India Spec. Publ. 28 303–319.
Kushiro I 2007 Origin of magmas in subduction zones: A review of experimental studies; Proc. Jpn. Acad. Ser. 83 1–15.
Lafleche M R, Dupuy C and Bougault H 1992 Geochemistry and petrogenesis of Archean volcanic rocks of the southern Abitibi Belt, Quebec; Precamb. Res. 57 207–241.
Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne F C, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J, Mandarino J A, Maresch W V, Nickel E H, Rock N M S, Schumacher J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W and Youzhi G 1997 Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names; Am. Mineral. 82 1019–1037.
Le Bas M J 2000 IUGS reclassification of the high-Mg and picritic volcanic rocks; J. Petrol. 41 1467–1470.
Manikyamba C, Naqvi S M, Subba Rao D V, Ram Mohan M, Khanna T C, Rao T G and Reddy G 2005 Boninites from the Neoarchaean Gadwal greenstone belt, Eastern Dharwar craton, India: Implications for Archaean subduction processes; Earth Planet. Sci. Lett. 23 65–83.
Manikyamba C, Santosh M, Chandan Kumar B, Rambabu S, Tang L, Saha A, Khelen A, Ganguly S, Singh T D and Subba Rao D V 2016 Zircon U–Pb geochronology, Lu–Hf isotope systematic, and geochemistry of bimodal volcanic rocks and associated granitoids from Kotri belt, central India: Implications for Neoarchean–Paleoproterozoic crustal growth; Gondwana Res. 38 313–333.
Meffre S, Falloon T J, Crawford T J, Hoernle K, Hauff F, Duncan R A, Bloomer S H and Wright D J 2012 Basalts erupted along the Tongan fore arc during subduction initiation: Evidence from geochronology of dredged rocks from the Tonga fore arc and trench; Geochem. Geophys. Geosys., https://doi.org/10.1029/2012GC004335.
Melluso L and Sethna S F 2011 Mineral compositions of the Deccan igneous rocks of India: An overview; In: Topics in Igneous Petrology (eds) Ray J, Sen G and Ghosh B, Springer Science.
Merlet C 1994 An accurate computer correction program for quantitative electron probe microanalysis; Microchim. Acta 114/115 363–376.
Mir A R, Alvi S H and Balaram V 2011 Geochemistry of the mafic dykes in parts of the Singhbhum Granitoid complex: Petrogenesis and tectonic setting; Arab. J. Geosci. 4 933–943.
Mir A M, Alvi S H and Balaram V 2015 Boninitic geochemical characteristics of high-Mg mafic dykes from the Singhbhum granitoid complex, Eastern India; Chin. J. Geochem. 34(2) 241–251.
Mondal M E A, Hussain M F and Ahmad T 2006 Continental growth of Bastar craton, central Indian shield during precambrian via multiphase subduction and lithospheric extension/rifting: Evidence from geochemistry of gneisses, granitoids and mafic dykes; J. Geosci. 49 137–151.
Mondal M E A, Hussain M F and Ahmad T 2007 Geochemistry and petrogenesis of the Proterozoic mafic dyke swarms of Bastar craton of central Indian Shield; J. Appl. Geochem. 9 17–27.
Naqvi S M and Rogers J J W 1987 Precambrian geology of India; Oxford University Press, Oxford, 233p.
Neogi S, Miura H and Hariya Y 1996 Geochemistry of the Dongargarh volcanic rocks, central India: Implications for the Precambrian mantle; Precamb. Res. 76 77–91.
Nielsen S G, Joel A B and Krogstad E J 2002 Petrogenesis of an early Archaean (3.4 Ga) norite dyke, Isua, West Greenland: Evidence for early Archaean crustal recycling; Precamb. Res. 118 133–148.
Pearce J A, van der Laan S R, Arculus R J, Murton B J, Ishii T, Peate D W and Parkinson I J 1992 Boninite and harzburgite from Leg 125 (Bonin-Mariana forearc): A case study of magma genesis during the initial stages of subduction; In: Proceedings of the Ocean Drilling Program, Scientific Results, 125 pp. 623–659.
Piercey S J, Murphy D C, Mortensen J K and Paradis S 2001 Boninite magmatism in a continental margin setting, Yukon–Tanana terrane, southeastern Yukon, Canada; Geology 29 731–734.
Pisarevsky S A, Biswal T K, Wang X-C, De Waele B, Ernst R, Söderlund U, Tait J A, Ratre K, Singh Y K and Cleve M 2013 Palaeomagnetic, geochronological and geochemical study of Mesoproterozoic Lakhna Dykes in the Bastar Craton, India: Implications for the Mesoproterozoic supercontinent; Lithos 174 125–143.
Poidevin J L 1994 Boninite-like rocks from the Paleoproterozoic greenstone belt of Bogoin, Central African Republic: Geochemistry and petrogenesis; Precamb. Res. 68 97–113.
Polat A, Hofmann A W and Rosing M 2002 Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early Earth; Chem. Geol. 184 231–254.
Ramachandra H M, Mishra V P and Deshmukh S S 1995 Mafic Dykes in Bastar Precambrian: Study of the Bhanupratappur–Keshkal Mafic Dyke Swarms; Geol. Soc. India Mem. 33 183–208.
Ramakrishnan M 1990 Crustal development in southern Bastar, central India craton; Geol. Surv. India Spec. Publ. 28 44–66.
Ramakrishnan M and Vaidyanadhan R 2008 Geology of India; Geol. Soc. India 1 556.
Rao G V 1981 The correlation of the Dongargarh, Chilpi and Sausar Groups. Geol. Surv. India Spec. Publ. 3 9–15.
Ratre K, De Waele B, Biswal T K and Sinha S 2010 SHRIMP geochronology for the 1450 Ma Lakhna dyke swarm: Its implication for the presence of Eoarchaean crust in the Bastar Craton and 1450–517 Ma depositional age for Purana basin (Khariar), Eastern Indian Peninsula; J. Asian Earth Sci. 39 565–577.
Raza M, Jafri S H, Alvi S H and Khan M S 1993 Geodynamic evolution of the Indian shield during Proterozoic: Geochemical evidence from mafic volcanic rocks; J. Geol. Soc. India 41 455–469.
Roy A, Ramachandra H M and Bandopadhyay B K 2000 Supracrustal belts and their significance in the crustal evolution of central India; Geol. Surv. India Spec. Publ. 55 361–380.
Sarkar S N 1994 Chronostratigraphy and tectonics of the Dongargarh Supergroup Precambrian rocks in Bhandara-Durg region, central India; Indian J. Earth Sci. 21 19–31.
Sarkar S N, Gopalan K and Trivedi J R 1981 New data on the geochronology of the Precambrians of Bhandara-Durg, central India; Indian J. Earth Sci. 8(2) 131–151.
Sarkar G, Gupta S N and Bishui P K 1994 New Rb-Sr isotopic age and geochemistry of granite gneisses from southern Bastar craton: Implication for crustal evolution; Indian Mineral. 48 7–12.
Sensarma S, Palme H and Mukhopadhyay D 2002 Crust–mantle interaction in the genesis of siliceous high magnesian basalts: Evidence from the early Proterozoic Dongargarh Supergroup, India; Chem. Geol. 187 21–37.
Sinha D K, Jain S K and Naganath K P 2011 Tectonic significance and age of doleritic sill near Bandhalimal in the Singhora Protobasin of Chhattisgarh Basin, central India. In: Dyke Swarms: Keys for Geodynamic Interpretation (ed.) Srivastava R K, Springer-Verlag, Heidelberg, pp. 167–187.
Smellie J L, Stone P and Evans J 1995 Petrogenesis of boninites in Ordovician Ballantrae complex Ophiolite, south western Scotland; J. Volcano. Geotherm. Res. 69 323–342.
Smithies R H 2002 Archaean boninite-like rocks in an intracratonic setting; Earth Planet. Sci. Lett. 197 19–34.
Smithies R H, Champion D C and Sun S S 2004 The case of Archaean boninites; Contrib. Mineral. Petrol. 147 705–721.
Srivastava R K 2006 Geochemistry and petrogenesis of Neoarchaean high-Mg low-Ti mafic igneous rocks in an intracratonic setting, central India craton: Evidence for Boninite magmatism; Geochem. J. 40 15–31.
Srivastava R K 2008 Global intracratonic boninite-norite magmatism during the Neoarchean-Paleoproterozoic: Evidence from the central Indian Bastar craton; Int. Geol. Rev. 50 61–74.
Srivastava R K and Gautam G C 2008 Precambrian mafic dyke swarms from the southern Bastar central India craton: Present and future perspectives. In: Indian dykes: Geochemistry, geophysics and geochronology (eds) Srivastava R K, Sivaji C and Chalapathi Rao N V, Narosa Publishing House Pvt. Ltd., New Delhi, pp. 367–376.
Srivastava R K and Gautam G C 2009 Precambrian mafic magmatism in the Bastar craton, central India; J. Geol. Soc. India 73 52–72.
Srivastava R K and Gautam G C 2012 Early Precambrian mafic dyke swarms from the Central Archaean Bastar craton, India: Geochemistry, petrogenesis and tectonic implications; Geol. J. 47 144–160.
Srivastava R K and Gautam G C 2015 Geochemistry and petrogenesis of Paleo-Mesoproterozoic mafic dyke swarms from northern baster Craton, central India: Geodynamic implication in reference to Columbia supercontinent; Gondwana Res. 28 1061–1078.
Srivastava R K and Singh R K 2003 Geochemistry of high- Mg mafic dykes from the Bastar craton: Evidence of Late Archaean boninite-like rocks in an intracratonic setting; Curr. Sci. 85 808–812.
Srivastava R K and Singh R K 2004 Trace element geochemistry and genesis of the Precambrian sub-alkaline mafic dykes from central India craton: Evidence for mantle metasomatism; J. Asian Earth Sci. 23 373–389.
Srivastava R K, Singh R K and Verma S P 2004 Late Archaean mafic volcanic rocks from the southern Bastar greenstone belt, central India: Petrological and tectonic significance; Precamb. Res. 131 305–322.
Srivastava R K, Heaman L M, French J E and Ferreira Filho C F 2011 Evidence for a Paleoproterozic event of metamorphism in the Bastar craton, central India: P-T-t constraints from mineral chemistry and U-Pb geochronology of mafic dykes; Episodes 34(1) 13–24.
Stern R J and Bloomer S H 1992 Subduction zone infancy: Examples from the Eocene Izu–Bonin–Mariana and Jurassic California arcs; Geol. Soc. Am. Bull. 104(12) 1621–1636.
Subba Rao D V, Balaram V, Charan S N, Sridhar D N and Naqvi S M 2004 Proterozoic mafic dykes in and around Chattisgarh basin, central India: Inferences of compositional variation in mantle sources; DST-DCS News Lett. 14 1–5.
Subba Rao D V, Sridhar D N, Balaram V, Nagaraju K, Rao T G, Keshavakrishna A and Singh U P 2008a Proterozoic mafic–ultramafic dyke swarms in the vicinity of Chattisgarh–Khariar–Singhora basins in Northern Bastar craton, central India; In: Indian Dykes: Geochemistry, Geophysics and Geochronology (eds) Srivastava R K, Sivaji C and Chalapathi Rao N V, Narosa Publishing House, New Delhi, pp. 377–396.
Subba Rao D V, Balaram V, Nagaraju K and Sridhar D N 2008b Palaeoproterozoic boninite like rocks in an intracratonic setting from Northern Bastar craton, central India; J. Geol. Soc. India 72 373–380.
Sun S S and McDonough W 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; In: Magmatism in Ocean Basins (eds) Saunders A D and Norry M J, Geol. Soc. London Spec. Publ. 42 313–345.
Sun S S and Nesbitt R W 1978 Petrogenesis of Archaean ultrabasic and basic volcanism: Evidence from rare earth elements; Contrib. Mineral. Petrol. 65 301–325.
Sun S S, Nesbitt R W and McCulloch M T 1989 Geochemistry and petrogenesis of Archaean and early Proterozoic siliceous high magnesian basalts. In: Boninites and Related Rocks (ed.) Crawford A J, Unwin Hyman, London, pp. 148–173.
Tatsumi Y and Eggins S 1995 Subduction Zone Magmatism; Blackwell Science, Oxford, 211p.
Turner S, Hawksworth G, Rogers N, Barlett J, Worthington T, Hergt G, Pearce J and Smith I 1997 \(^{238}\text{ U-- }^{230}\)Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga–Karmadec island-arc; Geochim. Cosmochim. Acta 61 4884–4885.
Wanjari N, Asthana D and Divakara Rao V 2005 Remnants of early continental crust in the Amgaon gneisses, central India: Geochemical evidence; Gondwana Res. 8 589–595.
Wilson M 1989 Igneous Petrogenesis: A Global Tectonic Approach; Unwin Hyman, London, 466p.
Yedekar D P, Jain S C, Nair K K K and Dutta K K 1990 The central Indian collision suture; Geol. Surv. India Spec. Publ. 28 1–43.
Acknowledgements
We thank the two anonymous reviewers and Associate Editor R Bhutani for their constructive comments and suggestions. BH and DM are gratefull to the Council of Scientific & Industrial Research (CSIR), New Delhi and UGC-SAP-DRS for the financial assistance. AD is thankful to the Head of the Geology Department, SPPU, for the support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Corresponding editor: Rajneesh Bhutani
Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Hazarika, B., Malpe, D.B. & Dongre, A. Petrology and geochemistry of a boninite dyke from the western Bastar craton of central India. J Earth Syst Sci 128, 32 (2019). https://doi.org/10.1007/s12040-018-1052-y
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12040-018-1052-y