Skip to main content

Advertisement

Log in

Structural and luminescent characterisation of uraniferous fluorapatite and haematite associated with phosphatic rocks of the Bijawar group in Sagar District, Madhya Pradesh (India)

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The structural and spectroscopic characteristics of phosphatic ferruginous shale samples from the Bijawar Group rocks from Sagar District of Madhya Pradesh (India) have been probed for identification of uranium species. Fluorapatite (\(\hbox {Ca}_{5}\hbox {(PO}_{4})_{3}\hbox {F}\), FAP) and haematite (\(\upalpha \)-\(\hbox {Fe}_{2}\hbox {O}_{3}\)) were identified as the main phases in the separated mineral concentrates. The photoluminescence (PL) and X-ray absorption near edge spectroscopy (XANES) studies pointed to a strong experimental evidence of both U(IV) and U(VI) oxidation states in the mineral concentrate portion obtained from the same parent host rock. The PL spectrum has confirmed the charge transfer (f–d) transition bands in UV and near-UV regions with emission peaks at ca. 290, 313, 336, 399 and 416 nm, which has been attributed to the substitution of \(\hbox {Ca}^{2+}\) ions by U(IV) in FAP and broad structureless emission due to stabilisation of U(VI) as \(\hbox {UO}_{6}^{6-}\) in haematite. Time-resolved spectroscopy studies have revealed biexponential decay components lasting 2–5 ns for U(IV) species and \(10\,\upmu \hbox {s}\) for U(VI) species. These characterisations revealed the fundamental information about the oxidation state and form of uranium in this region. Remediation measures for the Bijawar region are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albedri M B, Arar H A and Hameed W O 2014 Determination of natural radioactivity levels in surface soils of old phosphatic mines at Russaifa of Jordan; Int. J. Phys. Res. 4 31–38.

    Google Scholar 

  • Azami M, Mozafari S M and Rabiee M 2011 Synthesis and solubility of calcium fluoride/hydroxy-fluorapatite nanocrystals for dental applications; Ceram. Int. 37 2007–2014.

    Article  Google Scholar 

  • Banerjee D M, Khan M W Y, Shrivastav N and Saigal G C 1982 Precambrian phosphorites in the Bijawar rocks of Hirapur-Bassia areas, Sagar district Madhyapradesh; India Miner. Deposita 17 349–362.

    Google Scholar 

  • Baumann N, Arnold T and Lonschinski M 2012 TRFLS study on speciation of uranium in seepage water and pore water of heavy metal contaminated soil; J. Radioanal. Nucl. 291 673–679.

    Article  Google Scholar 

  • Beevers C A and McIntyre D B 1946 The atomic structure of fluorapatite and its relation to that of tooth and bone material; Miner. Mag. 27 254–257.

    Google Scholar 

  • Betancur A F, Pérez F R, Correa M, Del M and Barrero C A 2012 Quantitative approach in iron oxides and oxyhydroxides by vibrational analysis; Opt. Pura. Appl. 45(3) 269–275.

    Article  Google Scholar 

  • Blasse G 1975 Influence of local charge compensation on site occupation and luminescence of apatites; J. Solid State Chem. 14(2) 181–184.

    Article  Google Scholar 

  • Burns P C, Miller M L and Ewing R C 1996 \(\text{ U }^{6+}\) minerals and inorganic phases: A comparison and hierarchy of crystal structures; Can. Miner. 34 845–880.

    Google Scholar 

  • Carnell W T, Liu G K, Williams C W and Reid M F 1991 Analysis of the crystal-field spectra of the actinide tetrafluorides \({\rm UF}_{4}\), \({\rm NpF}_{4}\), and \({\rm PuF}_{4}\); J. Chem. Phys. 95 7194–7203.

    Article  Google Scholar 

  • Catalano J G, Heald S M, Jachara J M and Brown G E Jr 2004 Spectroscopic and diffraction studies of Uranium speciation in contaminated Vandose Zone sediments from the Hanford Site, Washington State; Environ. Sci. Technol. 38 2822–2828.

    Article  Google Scholar 

  • Cevik U, Baltas H, Tabak A and Damla N 2010 Radiological and chemical assessment of phosphate rocks in some countries; J. Hazard. Mater. 182 531–535.

    Article  Google Scholar 

  • Chung C W, Chun J, Wang G and Um W 2014 Effect of iron oxides on the rheological properties of cementitious slurry; Colloids Surf. A 453 94–100.

    Article  Google Scholar 

  • Cockbain A G and Smith G V 1967 Alkaline-earth-rare-earth silicate and germanate apatites; Mineral. Mag. 36 411–421.

    Google Scholar 

  • Comodi P, Liu Y and Frezzotti M L 2001 Structural and vibrational behaviour of Fluoroapatite with pressure: Part II. In-situ micro Raman spectroscopic investigation; Phys. Chem. Miner. 28 225–231.

    Article  Google Scholar 

  • Dar S A, Khan K F, Khan S A, Mir A R, Wani H and Balaram V 2014a Uranium (U) concentration and its genetic significance in the phosphorites of the Paleoproterozoic Bijawar Group of the Lalitpur district, Uttar Pradesh, India; Arab J. Geosci. 7 2237–2248.

    Article  Google Scholar 

  • Dar S A, Khan K F, Khan Saif A, Khan S and Alam M M 2014b Petromineralogical studies of the paleoproterozoic Phosphorites in the Sonrai basin, Lalitpur District, Uttarpradesh, India; Nat. Resour. Res. 24 339–348.

    Article  Google Scholar 

  • Dodge C J, Francis A J, Gillow J B, Halada G P, Eng C and Clayton C R 2002 Association of uranium with iron oxides typically formed on corroding steel surfaces; Environ. Sci. Technol. 36 3504–3511.

    Article  Google Scholar 

  • Duff M C, Morris D E, Hunter D B and Bertsch P M 2000 Spectroscopic characterization of uranium in evaporation basin sediments; Geochim. Cosmochim. Acta 64 1535–1550.

    Article  Google Scholar 

  • Duff M, Coughlin J and Hunter D 2002 Uranium co-precipitation with iron oxide minerals; Geochim. Cosmochim. Acta 66 3533–3547.

    Article  Google Scholar 

  • Dzombak D A and Morel F M M 1990 Surface complexation modeling – Hydrous ferric oxide; 24, John Wiley & Sons, New York.

    Google Scholar 

  • Elliott J C 1994 Structure and chemistry of the apatites and other calcium orthophosphates; Elsevier, New York.

    Google Scholar 

  • Elliott J C, Wilson R M and Dowker S E P 2002 ‘Apatite Structures’, JCPDS-International Centre for diffraction data; Adv. X-ray Anal. 45 172–181.

    Google Scholar 

  • Elton E S, Pacheko J S, Bargar J R, Shi Z, Liu J, Kovarik L, Engelhard M H and Felmy A R 2012 Reduction of U(VI) incorporated in the structure of haematite; Environ. Sci. Technol. 46(17) 9428–9436.

    Article  Google Scholar 

  • Finch R and Murakami T 1999 Systematics and paragenesis of uranium minerals; In: Uranium: Mineralogy, geochemistry and the environment (eds) Burns P C and Finch R, Mineral. Soc. Am38 91–180.

  • Fleet M E and Pan Y 1995 Site preference of rare earth elements in fluorapatite; Am. Mineral. 80 329–335.

    Article  Google Scholar 

  • Gaft M, Panczer G, Reisfeld R and Uspensky E 2001 Laser-induced time-resolved luminescence as a tool for rare-earth element identification in mineral; Phys. Chem. Mineral. 28 347–363.

    Article  Google Scholar 

  • Godbole S V, Page A G, Sangeeta Sabharwal S C, Gesland J Y and Sastry M D 2001 UV luminescence of \(\text{ U }^{4+}\) ions in LiYF\(_{4}\) single crystal: Observation of \(\text{5f }^{1}\text{6d }^{1}\)\(\text{5f }^{2}\) transition; J. Lumin. 93 213.

    Article  Google Scholar 

  • Görller-Walrand C, Gos M P and D’Olieslager W 1993 The luminescence spectra of \({\rm UF}_{4}\) and \({\rm UCl}_{4}\); Radiochim. Acta 62 55–60.

    Article  Google Scholar 

  • Gunawardance R P, Howie R A and Glasser F P 1982 Structure of the oxyapatite \({\rm NaY}_{9}({\rm SiO}_{6}){\rm O}_{2}\); Acta Crystllogr. B 38 1564–1566.

    Article  Google Scholar 

  • Guzman E T R, Rios M S, Garcia J L I and Regil E O 1995 Uranium in phosphate rock and derivatives; J. Radioanal. Nucl. 189(2) 301–306.

    Article  Google Scholar 

  • Hanesch M 2009 Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies; Geophys. J. Int. 177 941–948.

    Article  Google Scholar 

  • Hashem E, Swinburne A N, Schulzke C, Evans R C, Platts J A, Kerridge A, Natrajan L S and Baker R J 2013 Emission spectroscopy of uranium (IV) compounds: A combined synthetic, spectroscopic and computational study; RSC Adv. 3 4350–4361.

    Article  Google Scholar 

  • Hsi C K D and Langmuir D 1985 Adsorption of uranyl on to ferric oxyhydroxides: Application of the surface complexation site-binding model; Geochim. Cosmochim. Acta 49 1931–1941.

    Article  Google Scholar 

  • Hughes J M, Cameron M and Mariano A N 1991 Rare-earth-element ordering and structural variations in natural rare-earth-bearing apatites; Am. Mineral. 76 1165–1173.

    Google Scholar 

  • Hughson M R and SenGupta J G 1964 A thorian intermediate member of the britholite-apatite series; Am. Mineral. 49 937.

    Google Scholar 

  • Jha S K, Shrivastav J P and Bhairam C L 2012 Clay mineralogical studies in the bijawars of the Sonrai Basin: Paleoenvironmental implications and interferences on the uranium mineralization; J. Geol. Soc. India 79 117–134.

    Article  Google Scholar 

  • Jones D L, Andrewa M B, Swinburne N, Botchway S W, Ward Andrew D and Lloyd J R 2015 Fluorescence spectroscopy and microscopy as tools for monitoring redox transformation of uranium in biological system; Chem. Sci. 6 5133–5138.

    Article  Google Scholar 

  • Jorge Villar S E, Edwards H G M and Worland M R 2005 Comparative evaluation of Raman spectroscopy at different wavelengths for extremophile exemplars; Orig. Life Evol. Biospheres 35 489–506.

    Article  Google Scholar 

  • Kay M I, Young R A and Posner A S 1964 Crystal structure of hydroxyapatite; Nature 204 1050–1052.

    Article  Google Scholar 

  • Kirishima A, Kimura T, Nagaishi R and Tochiyama O 2004 Luminescence properties of tetravalent uranium in aqueous solution; Radiochim. Acta 92 705–710.

    Google Scholar 

  • Kirm M, Krupa J S and Makhov V N 2003 6d5f and \({\rm 5f}^{2}\) configurations of \({\rm U}_{4}\) doped into \({\rm LiYF}_{4}\) and \({\rm YF}_{3}\) crystal; J. Lumin. 104 85–92.

    Article  Google Scholar 

  • Krepelova A, Brendler V, Sachs S, Baumann N and Bernhard G 2007 U(VI)– Kaolinite surface complexation in absence and presence of humic acid studies by TRFLS; Environ. Sci. Technol. 41(17) 6142–6147.

    Article  Google Scholar 

  • Luo Y, Hughes J M, Rakovan J and Pan Y 2009 Site preference of U, F and Sr apatites; Am. Mineral. 94 345–351.

    Article  Google Scholar 

  • Mackie P E, Elliott J C and Young R A 1972 Monoclinic structure of synthetic Ca,(PO.),CI, chlorapatite; Acta Crystallogr. B 28 1840–1848.

    Article  Google Scholar 

  • Malek C K, Krupa J C and Guillamont R 1984 Spectra of \({\rm U}^{4+}\) ion at a site of D-2d symmetry; Inorg. Chim. Acta 94 92–95.

    Article  Google Scholar 

  • Massey M S, Lezama-Pacheco J S, Michel F M and Fendorf S 2014 Uranium incorporation into aluminum-substituted ferrihydrite during iron (II)-induced transformation; Environ. Sci. Process. Impact. 16 2137–2144.

    Article  Google Scholar 

  • Menzel R G 1968 Uranium, thorium and radium content in phosphate rocks and their possible radiation Hazard;J. Agric. Food. Chem. 16(2) 231–234.

    Article  Google Scholar 

  • Morris D E, Allen P G, Berg J M, Chisolm-Brause C J, Conradson S D, Donhoe R J, Hess N J, Musgrave J A, Drew Tait C and Nancy J 1996 Speciation of uranium in Fernald soils by molecular spectroscopic methods: Characterization of untreated soils; Environ. Sci. Technol. 30 2322–2331.

    Article  Google Scholar 

  • Murad E and Schwertmann U 1986 Influence of Al substitution and crystal size on the room temperature Mossabeur spectra of haematite; Clay Clay. Miner34 1–6.

    Article  Google Scholar 

  • Nary Szabo S 1930 The structure of apatite; Z. Kristallogr. 75 387–398.

    Google Scholar 

  • Panczer G, Gaft M, Reufeld R, Shaval S, Boulan G and Chapagown B 1998 Luminiscence of uranium in natural apatites; J. Alloys Compd. 275–277 269–272.

    Article  Google Scholar 

  • Pauling L and Henricks S B 1925 The crystal structure of hematite and corundum; J. Am. Chem. Soc47(3) 781–790.

    Article  Google Scholar 

  • Philip G, Fister H and Pauly H 1979 Occupational dose from natural radionuclides in phosphate fertilizers; Radiat. Environ. Biophys. 16 143–156.

    Article  Google Scholar 

  • Regensperg S, Margot-Roguier C, Froidevaux P, Steinmann P, Junier P and Bernier-Latmani R 2010 Speciation of naturally-accumulated uranium in an organic–rich soil of an alpine region (Switzerland); Geochim. Cosmochim. Acta 74 2082–2098.

    Article  Google Scholar 

  • Reitz T, Merroun M L, Rossberg A, Steudner R and Solenska-Pobell S 2011 Bioaccumulation of U(VI) by Sulfolobus acidocaldarius under moderate acidic conditions 99; Radiochim. Acta 9 543–554.

    Article  Google Scholar 

  • Roy M, Bagchi A K, Babu E V S S K, Mishra B and Krishnamurthy P 2004 Petromineragraphy and mineral chemistry of Bituminous Shale hosted uranium mineralization at Sonrai, Lalitpur district, Uttar Pradesh; J. Geol. Soc. India 63 291–298.

    Google Scholar 

  • Sahu S K, Ajmal P Y, Bhangare R C, Tiwari M and Pandit G G 2014 Natural radioactivity assessment of a phosphate fertilizer plant area; J. Radiat. Res. Appl. Sci7 123–128.

    Article  Google Scholar 

  • Satten R A, Schreiber C L and Wong E Y 1965 Energy levels of \({\rm U}^{4+}\) in an octahedral crystalline field; J. Chem. Phys42 162–171.

    Article  Google Scholar 

  • Shannon R D 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides; Acta. Crystallogr. A 32 751–761.

    Article  Google Scholar 

  • Stoch A, Jastrzebski W, Brozek A, Trybalska B, Cichocinska M and Szarawar E 1997 FTIR monitoring of the growth of the carbonate containing apatite layers from simulated and natural body fluids; J. Mol. Struct. 511 287–294.

    Google Scholar 

  • Tanner P A, Pei Z W, Jun L, Yulong L and Qiang S 1997 Luminiscence of uranium doped strotium borate (\({\rm SrB}_{4}0_{7}\)); J. Phys. Chem. Solids. 58(7) 1143–1146.

    Article  Google Scholar 

  • Waite T D, Davis J A, Payne T E, Waychunas G A and Xu N 1994 Uranium (VI) adsorption to ferrihydrite: Application of a surface complexation model; Geochim. Cosmochim. Acta 58(24) 5465–5478.

    Article  Google Scholar 

  • Weigel F 1986 Uranium; In: The chemistry of the actinide elements; 2nd edn, Vol. 1 (eds) Katz J J et al., Chapman and Hall, Springer, Netherlands, Chap. 5, pp. 169–442.

    Chapter  Google Scholar 

  • White T J and Zhili D 2003 Structural deviation and crystal chemistry of apatites; Acta. Crystallogr. B 59 1–16.

    Article  Google Scholar 

  • Willis B T M and Rooksby H P 1952 Crystal structure and anti-ferromagnetism in Haematite; Phys. Soc. London B 65 950–962.

    Article  Google Scholar 

  • Wright A O, Seltzer M D, Gruber J B and Chai B H T 1995 Site-selective spectroscopy and determination of energy levels in \({\rm Eu}^{3+}\)-doped strontium fluorophosphate; J. Appl. Phys. 78(4) 2456–2467.

    Article  Google Scholar 

Download references

Acknowledgements

The authors deeply acknowledge Ms. Parasmani Rajput and Mr S N Jha, RRCAT, Indore for their help in XANES measurement and Mr Raghvendra Reddy, IUC, Indore for his help in Mössbauer measurements. The authors also like to thank Mr A K Rai, the Director, AMD, for granting the permission to pursue this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragya Pandit.

Additional information

Corresponding editor: N V Chalapathi Rao

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 112 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, P., Kumar, S., Bangotra, P. et al. Structural and luminescent characterisation of uraniferous fluorapatite and haematite associated with phosphatic rocks of the Bijawar group in Sagar District, Madhya Pradesh (India). J Earth Syst Sci 127, 110 (2018). https://doi.org/10.1007/s12040-018-1009-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-1009-1

Keywords

Navigation