Skip to main content

Advertisement

Log in

Reassembly of the Dharwar and Bastar cratons at ca. 1 Ga: Evidence from multiple tectonothermal events along the Karimnagar granulite belt and Khammam schist belt, southern India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The northern part of the Nellore–Khammam schist belt and the Karimnagar granulite belt, which are juxtaposed at high angle to each other have unique U–Pb zircon age records suggesting distinctive tectonothermal histories. Plate accretion and rifting in the eastern part of the Dharwar craton and between the Dharwar and Bastar craton indicate multiple and complex events from 2600 to 500 Ma. The Khammam schist belt, the Dharwar and the Bastar craton were joined together by the end of the Archaean. The Khammam schist belt had experienced additional tectonic events at \(\sim \)1900 and \(\sim \)1600 Ma. The Dharwar and Bastar cratons separated during development of the Pranhita–Godavari (P–G) valley basin at \(\sim \)1600 Ma, potentially linked to the breakup of the Columbia supercontinent and were reassembled during the Mesoproterozoic at about 1000 Ma. This amalgamation process in southern India could be associated with the formation of the Rodinia supercontinent. The Khammam schist belt and the Eastern Ghats mobile belt also show evidence for accretionary processes at around 500 Ma, which is interpreted as a record of Pan-African collisions during the Gondwana assembly. From then on, southern India, as is known today, formed an integral part of the Indian continent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acharyya S K 2003 A plate tectonic model for Proterozoic crustal evolution of central Indian tectonic zone; Geol. Mag. 7 9–31.

    Google Scholar 

  • Balasubrhamanyan M N 2006 Geology and tectonics of India: An overview; Int. Assoc. Gondwana Res. Mem. 9.

  • Basu A and Bickford M E 2015 An alternate perspective of the opening and closing of the intracratonic Purana basins in peninsular India; J. Geol. Soc. India 85 5–25.

    Article  Google Scholar 

  • Belica M E, Piispa E J, Meert J G, Pesonenc L J, Plado J, Pandit M, Kamenova G D and Celestinoa M 2014 Paleoproterozoic mafic dyke swarms from the Dharwar craton; paleomagnetic poles for India from 2.37–1.88 Ga and rethinking the Columbia supercontinent. Precamb. Res. 244 100–122.

    Article  Google Scholar 

  • Biswal T K, De Waele B and Ahuja H 2007 Timing and dynamics of the juxtaposition of the Eastern Ghats Mobile Belt against the Bhandara Craton, India: A structural and zircon U-Pb SHRIMP study of the fold-thrust belt and associated nepheline syenite plutons; Tectonics 26 1–21.

    Article  Google Scholar 

  • Bleeker W 2003 The late Archaean record: A puzzle in \(c.\) 35 pieces; Lithos 71 99–134.

    Article  Google Scholar 

  • Bose S, Dunkley D J, Dasgupta S, Das K and Arima M 2011 India–Antarctica–Australia–Laurentia connection in the Paleoproterozoic–Mesoproterozoic revisited: Evidence from new zircon U–Pb and monazite chemical age data from the Eastern Ghats Belt, India; Geol. Soc. Am. Bull. 123 2031–2049.

    Article  Google Scholar 

  • Bradley D C 2011 Secular trends in the geologic record and the supercontinent cycle; Earth-Sci. Rev. 108 16–33.

    Article  Google Scholar 

  • Carson C J, Ague J J and Coath C D 2002 U–Pb geochronology from Tonagh Island, East Antarctica: Implication for the timing of ultra-high temperature metamorphism of the Napier complex; Precamb. Res. 116 237–263.

    Article  Google Scholar 

  • Chadwick B, Vasudev V N and Hegde G V 2000 The Dharwar craton, southern India, interpreted as the result of late Archean oblique convergence; Precamb. Res. 99 91–111.

    Article  Google Scholar 

  • Chalapathi Rao N V and Srivastava R K 2016 Kimberlites, lamproites, lamprophyres, carbonatites, other alkaline rocks and mafic dykes from the Indian Shield: Glimpses of research (2012–2016); Proc. Indian Nat. Sci. Acad. 82 515–536.

    Google Scholar 

  • Chalapathi Rao N V, Wu F Y, Mitchell R H, Li Q L and Lehmann B 2013 Mesoproterozoic U-Pb ages, trace element and Sr-Nd isotopic composition of perovskite from kimberlites of the Eastern Dharwar craton, southern India: Distinct mantle sources and a widespread 1.1 Ga tectonomagmatic event; Chem. Geol. 353 48–64.

    Article  Google Scholar 

  • Chaudhuri A K and Chanda S K 1991 The Proterozoic basin of Pranhita-Godavari valley: An overview; In: Sedimentary basins of India: Tectonic context (eds) Tandon S K, Pant C C and Casshyap S B, Ganodaya Prakashan, Nainital, pp. 13–30.

    Google Scholar 

  • Chaudhuri A K, Deb G K, Patranabis-Deb S and Sarkar S 2012 Paleogeographic and tectonic evolution of the Pranhita-Godavari valley, central India: A stratigraphic perspective; Am. J. Sci. 312 766–815.

    Article  Google Scholar 

  • Chaudhuri A K, Saha D, Deb G K, Patranabis-Deb S, Mukherjee M K and Ghosh G 2002 The Purana Basins of Southern Cratonic Province of India: A case for mesoproterozoic fossil rifts; Gondwana Res. 5 23–33.

    Article  Google Scholar 

  • Conrad J E, Hein J R, Chaudhuri A K, Patranabis-Deb S, Mukhopadhyay J, Deb G K and Beukes N J 2011 Constraints on the development of Proterozoic basins in central India from \(^{40}\)Ar/\(^{39}\)Ar analysis of authigenic glauconitic minerals; Geol. Soc. Am. Bull. 123(1/2) 158–167.

    Article  Google Scholar 

  • Crawford A R 1969 India, Ceylon and Pakistan: New age data and comparisons with Australia; Nature 233 380–384.

    Article  Google Scholar 

  • Das K, Yokoyama K, Chakraborty P P and Sarkar A 2009 Basal tuffs and contemporaneity of the Chattisgarh and Khariar basins based on new dates and geochemistry; J. Geol. 117 88–102.

    Article  Google Scholar 

  • Das S, Shukla D, Bhattacharjee S and Mitra S K 2015 Age constraints of Udayagiri domain of Nellore schist belt by xenotime dating around Pamuru, Prakasam district, Andhra Pradesh; J. Geol. Soc. India 85 289–298.

    Article  Google Scholar 

  • Dasgupta S, Bose S, Bhowmik S K and Sengupta P 2017 The Eastern Ghats Belt, India, in the context of supercontinent assembly; In: Crustal evolution of India and Antarctica: The supercontinent connection (eds) Pant N C and Dasgupta S, Geol. Soc. London, Spec. Publ. 457 87–104.

  • Demirer K 2012 U–Pb Baddeleyite ages from mafic dyke swarms in Dharwar Craton, India: Links to an ancient supercontinent; Dissertations in Geology at Lund University, Master’s thesis, 308p.

  • Dharma Rao C V, Santosh M and Wu Y 2011a Mesoproterozoic ophiolitic mélange from the SE periphery of the Indian plate: U–Pb zircon ages and tectonic implications; Gondwana Res. 19 384–401.

    Article  Google Scholar 

  • Dharma Rao C V, Windley B F and Choudhary A K 2011b The Chimalpahad anorthosite complex and associated basaltic amphibolites, Nellore Schist Belt, India: Magma chamber and roof of a Proterozoic island arc; J. Asian Earth Sci. 40 1027–1043.

    Article  Google Scholar 

  • Dobmeier C and Raith M 2003 Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India; In: Proterozoic east Gondwana: Supercontinent assembly and breakup (eds) Yoshida M, Windley B F and Dasgupta S, Geol. Soc. London, Spec. Publ. 206 145–168.

  • Dobmeier C, Lutke S, Hammerschmidt K and Mezger K 2006 Emplacement and deformation of the Vinukonda meta-granite (Eastern Ghats, India) – Implications for the geological evolution of peninsular India and for Rodinia reconstructions; Precamb. Res. 146 165–178.

    Article  Google Scholar 

  • French J E and Heaman L M 2010 Precise U-Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton, India: Implications for the existence of the Neoarchean supercraton Sclavia; Precamb. Res. 183 416–441.

    Article  Google Scholar 

  • French J E, Heaman L M, Chacko T and Rivard B 2004 Global mafic magmatism and continental breakup at 2.2 Ga: Evidence from the Dharwar craton, India; Abstracts Geol. Soc. Am. 36 340p.

  • Friend C R L and Nutman A P 1991 SHRIMP U–Pb geochronology of the Closepet Granite and peninsular gneiss, Karnataka, south India; J. Geol. Soc. India 38 357–368.

    Google Scholar 

  • Ghosh D, Das J N, Rao A K, Ray Barman T, Kollapuri V K and Sarkar A 1994 Fission-track and K–Ar dating of pegmatite and associated rocks of Nellore schist belt, Andhra Pradesh: Evidence of Middle to Late Proterozoic events; Indian Mineral. 48 95–102.

  • Halls H C, Kumar A, Srinivasan R and Hamilton M A 2007 Paleomagnetism and U/Pb geochronology of easterly trending dykes in the Dharwar Craton, India: Feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga; Precamb. Res. 155 47–68.

    Article  Google Scholar 

  • Hari Prasad B, Okudaira T, Hayasaka Y, Yoshida M and Divi R S 2000 Petrology and geochemistry of amphibolites from the Nellore–Khammam schist belt, SE India; J. Geol. Soc. India 56 67–78.

    Google Scholar 

  • Henderson B, Collins A, Payne J, Forbes C and Saha D 2013 Geologically constraining India in Columbia: The age, isotopic provenance and geochemistry of the protoliths of the Ongole Domain, Southern Eastern Ghats, India; Gondwana Res. 26 888–906.

    Article  Google Scholar 

  • Holland T H 1907 The imperial gazetteer of India; 1st edn, Oxford At The Clarendon Press, pp. 50–103.

  • Jackson S E, Pearson N J, Griffin W L and Belousova E A 2004 The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology; Chem. Geol. 211 47–69.

    Article  Google Scholar 

  • Jayananda M, Kano T, Peucat J J and Channabasappa S 2008 3.35 Ga komatiite volcanism in the western Dharwar craton, southern India: Constraints from Nd isotopes and whole rock geochemistry; Precamb. Res. 162 160–179.

    Article  Google Scholar 

  • Jayananda M, Peucat J J, Chardon D, Krishna Rao B, Fanning C M and Corfu F 2013 Neoarchean greenstone volcanism and continental growth, Dharwar craton, southern India: Constraints from SIMS U–Pb zircon geochronology and Nd isotopes; Precamb. Res. 227 55–76.

    Article  Google Scholar 

  • Joy S, Jelsma H, Armstrong R and Tappe S 2015 SHRIMP U–Pb zircon provenance of the Sullavai Group of Pranhita–Godavari basin and Bairenkonda formation of Cuddapah basin, with implications for the southern Indian Proterozoic tectonic architecture; J. Asian Earth Sci. 111 827–839.

    Article  Google Scholar 

  • Kale V S and Phansalkar V G 1991 Purana basins of peninsular India: A review; Basin Res. 3 1–36.

    Article  Google Scholar 

  • Korhonen F J, Saw A K, Clark C, Brown M and Bhattacharya S 2011 New constraints on UHT metamorphism in the Eastern Ghats Province through the application of phase equilibria modelling and in situ geochronology; Gondwana Res. 20 764–781.

    Article  Google Scholar 

  • Kovach V P, Simmat R, Rickers K, Berezhnaya N G, Salnikova E B, Dobmeier C, Raith M M, Yakovleva S Z and Kotov A B 2001 The Western Charnockite Zone of the Eastern Ghats Belt, India – an independent crustal province of Late Archaean (2.8 Ga) and Palaeoproterozoic (1.7–1.6 Ga) terrains; Gondwana Res. 4 666–667.

    Article  Google Scholar 

  • Kumar A, Heaman L M and Manikyamba C 2007 Mesoproterozoic kimberlites in South India: A possible link to 1.1 Ga global magmatism; Precamb. Res. 154 192–204.

    Article  Google Scholar 

  • Kumar A, Hamilton M A and Halls H C 2012a A Paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, southern India; Geochem. Geophys. Geosyst. 13(2), https://doi.org/10.1029/2011GC003926.

  • Kumar A, Nagaraju E, Besse J and Bhaskar Rao Y J 2012b New age, geochemical and paleomagnetic data on a 2.21 Ga dyke swarm from south India: Constraints on Paleoproterozoic reconstruction; Precamb. Res. 220–221 123–138.

    Article  Google Scholar 

  • Kumar A, Parashuramulu V and Nagaraju E 2015 A 2082 Ma radiating dyke swarm in the Eastern Dharwar Craton, southern India and its implications to Cuddapah basin formation; Precamb. Res. 266 490–505.

    Article  Google Scholar 

  • Ludwig K R 2001 Isoplot 3.0, a geochronological toolkit for Microsoft Excel; Special Publication No. 4, Berkeley Geochronology Center, Berkeley, California, pp. 1–70.

  • Ma M, Wan Y, Santosh M, Xu Z, Xie H, Dong C, Liu D and Guo C 2012 Decoding multiple tectonothermal events in zircon from single rock samples: SHRIMP zircon U–Pb data from the late Neoarchean rocks of Daquingshan, North China Craton; Gondwana Res. 22 810–827.

    Article  Google Scholar 

  • Mallikarjuna R J, Bhattacharji S, Rao M N and Hermes O D 1995 \(^{40}\)Ar–\(^{39}\)Ar ages and geochemical characteristics of dolerite dykes around the Proterozoic Cuddapah basin, South India; In: Mafic dyke swarms of Peninsular India (ed.) Devaraju T C, Geol. Soc. India. Memoir 33 307–328.

  • Malone S J, Meert J G, Banerjee D M, Pandit M K, Tamrat E, Kamenov G D, Pradhan V R and Sohl L E 2008 Paleomagnetism and detrital zircon geochronology of the upper Vindhyan Sequence, Son Valley and Rajasthan, India: A ca. 1000 Ma closure age for the Purana basins; Precamb. Res. 164 137–159.

    Article  Google Scholar 

  • Meert J G 2012 What’s in a name? The Columbia (Paleopangaea/Nuna) supercontinent; Gondwana Res. 21 987–993.

    Article  Google Scholar 

  • Meert J G, Pandit M K, Pivarunas A, Katusin K and Sinha A K 2017 India and Antarctica in the Precambrian: A brief analysis; In: Crustal evolution of India and Antarctica: The supercontinent connection (eds) Pant N C and Dasgupta S, Geol. Soc. London, Spec. Publ. 457, https://doi.org/10.1144/SP457.13.

  • Moeen S 1998 P–T estimates from the Nellore schist belt (India) and evidence for superimposed metamorphic events; Geol. J. 33 1–15.

    Article  Google Scholar 

  • Mukhopadhyay D and Basak K 2009 The Eastern Ghats Belt–Polycyclic granulite terrane; J. Geol. Soc. India 73 489–518.

    Article  Google Scholar 

  • Murthy Y G K, Baburao V, Guptasarma D, Rao J M and Rao M N 1987 Tectonic, petrochemical and geophysical studies of mafic dyke swarms around the Proterozoic Cuddapah basin, south India; In: Mafic dyke swarms (eds) Halls H C and Fahrig W F, Geol. Assoc. Canada, Spec. Publ. 34 303–316.

  • Nance R D and Murphy J B 2013 Origin of the supercontinent cycle; Geosci. Front. 4 439–448.

    Article  Google Scholar 

  • Nance D R, Murphy J B and Santosh M 2013 The supercontinent cycle: A retrospective essay; Gondwana Res. 25(1) 4–29.

    Article  Google Scholar 

  • Naqvi S M and Rogers J J W 1987 Precambrian Geology of India; Oxford University Press, Oxford.

    Google Scholar 

  • Naqvi S M, Divakara Rao V and Narain H 1974 The protocontinental growth of the Indian shield and the antiquity of its rift valleys; Precamb. Res. 1(4) 345–389.

    Article  Google Scholar 

  • Okudaira T, Hamamoto T, Hari Prasad B and Kumar R 2001 Sm–Nd and Rb–Sr dating of amphibolite from the Nellore–Khammam schist belt, SE India: Constraints on the collision of the Eastern Ghats terrane and Dharwar–Bastar craton; Geol. Mag. 138 495–498.

    Article  Google Scholar 

  • Pandey B K, Gupta J N, Sarma K J and Sastry C A 1997 Sm–Nd, Pb–Pb and Rb–Sr geochronology and petrogenesis of the mafic dyke swarm of Mahbubnagar, South India: Implications for Paleoproterozoic crustal evolution of the Eastern Dharwar Craton; Precamb. Res. 84 181–196.

    Article  Google Scholar 

  • Patranabis-Deb S, Bickford M E, Hill B, Chaudhuri A K and Basu A 2007 SHRIMP ages of zircon in the uppermost tuff in Chattisgarh basin in central India require \(\sim \)500 Ma adjustment in Indian Proterozoic stratigraphy; J. Geol. 115 407–415.

    Article  Google Scholar 

  • Pradhan V R, Pandit M K and Meert J G 2008 A cautionary note on the age of the paleomagnetic pole obtained from the Harohalli dyke swarms, Dharwar craton, southern India; In: Indian dykes: Geochemistry, geophysics and geochronology (eds) Srivastava R K, Shivaji C H and Chalapathi Rao N V, Narosa Publication, New Delhi, pp. 339–352.

    Google Scholar 

  • Prakash D, Chandra Singh P, Tewari S, Joshi M, Frimmel H E, Hokada T and Rakotonandrasana T 2017 Petrology, pseudosection modelling and U–Pb geochronology of silica-deficient Mg–Al granulites from the Jagtiyal section of Karimnagar granulite terrane, northeastern Dharwar Craton, India; Precamb. Res. 299 177–194.

  • Qureshy M N, Krishna Brahmam N, Garde S C and Mathur B K 1968 Gravity anomalies and the Godavari rift, India; Geol. Soc. Am. Bull. 79 1221–1230.

    Article  Google Scholar 

  • Radhakrishna B P and Naqvi S M 1986 Precambrian continental crust of India and its evolution; J. Geol. 94 145–166.

    Article  Google Scholar 

  • Rajesham T, Bhaskar Rao Y J and Murti K S 1993 The Karimnagar granulite terrane – a new sapphirine bearing granulite province, south India; J. Geol. Soc. India 4 51–59.

    Google Scholar 

  • Rakotonandrasana T 2017 Petrology, pseudosection modelling and U–Pb geochronology of silica-deficient Mg–Al granulites from the Jagtiyal section of Karimnagar granulite terrane, northeastern Dharwar Craton, India; Precamb. Res. 299 177–194.

    Article  Google Scholar 

  • Ramakrishnan M 2003 Craton-mobile belt relations in Southern Granulite Terrain; Geol. Soc. India Memoir 50 1–24.

    Google Scholar 

  • Ramakrishnan M and Vaidyanadhan R 2008 Geology of India; Geological Society of India Bangalore, India.

    Google Scholar 

  • Ramam P K and Murty V N 1997 Geology of Andhra Pradesh; Geological Society of India, Bangalore, India.

    Google Scholar 

  • Rasmussen B, Bose P K, Sarkar S, Banerjee S, Fletcher I R and McNaughton N J 2002 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, lower Vindhyan, India: Possible implications for early evolution of animals; Geology 30 103–106.

    Article  Google Scholar 

  • Ratre K, De Waele B, Biswal T K and Sinha S 2010 SHRIMP geochronology for the 1450 Ma Lakhna dyke swarm: Its implications for the presence of Eoarchaean crust in the Bastar Craton and 1450–517 Ma depositional age for Purana basin (Kariar), Eastern Indian Peninsula; J. Asian Earth Sci. 39 565–577.

    Article  Google Scholar 

  • Ray J S, Martin M W, Veizer J and Bowring S A 2002 U-Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India; Geology 30 131–134.

    Article  Google Scholar 

  • Rickers K, Mezger K and Raith M M 2001 Evolution of the continental crust in the Proterozoic Eastern Ghats Belt, India and new constraints for Rodinia reconstruction: Implications from Sm–Nd, Rb–Sr and Pb–Pb isotopes; Precamb. Res. 112 183–210.

    Article  Google Scholar 

  • Robinson P L 1971 A problem of faunal replacement on Permo-Triassic continents; Palaeontology 14 131–153.

    Google Scholar 

  • Rogers J J W 1986 The Dharwar craton and the assembly of peninsular India; J. Geol. 94 129–143.

    Article  Google Scholar 

  • Rubatto D 2002 Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism; Chem. Geol. 184 123–138.

    Article  Google Scholar 

  • Saha D 2011 Dismembered ophiolites in Paleoproterozoic nappe complexes of Kandra and Gurramkonda, south India; J. Asian Earth Sci. 42 158–175.

    Article  Google Scholar 

  • Saha D and Mazumder R 2012 An overview of the Palaeoproterozoic geology of Peninsular India, and key stratigraphic and tectonic issues; In: Palaeoproterozoic of India (eds) Mazumder R and Saha D, Geol. Soc. London, Spec. Publ. 365 5–29.

  • Saha D and Tripathy V 2012 Palaeoproterozoic sedimentation in the Cuddapah basin, south India and regional tectonics – a review; In: Paleoproterozoic of India (eds) Mazumder R and Saha D, Geol. Soc. London, Spec. Publ. 365 159–182.

  • Saha D and Patranabis-Deb S 2014 Proterozoic evolution of Eastern Dharwar and Bastar cratons, India – an overview of the intracratonic basins, craton margins and mobile belts; J. Asian Earth Sci. 91 230–251.

    Article  Google Scholar 

  • Saha D, Sain A, Nandi P, Mazumder R and Kar R 2015 Tectonostratigraphic evolution of the Nellore schist belt, southern India, since the Neoarchaean; Geol. Soc. London Memoir 43 269–282.

    Article  Google Scholar 

  • Saha D, Patranabis-Deb S and Collins A 2016 Proterozoic stratigraphy of southern India cratons and global context; Stratigraphy and Timescales 1 1–59.

    Article  Google Scholar 

  • Sain A, Saha D, Joy S, Jelsma H and Armstrong R 2017 New SHRIMP age and microstructures from a deformed A-type granite, Kanigiri, Southern India: Constraining the hiatus between orogenic closure and post-orogenic rifting; J. Geol. 125(2) 241–259.

    Article  Google Scholar 

  • Santosh M, Yokoyama K and Acharyya S K 2004 Geochronology and tectonic evolution of Karimnagar and Bhopalpatnam granulite belts, central India; Gondwana Res. 7 501–518.

    Article  Google Scholar 

  • Sharma R S 2009 Cratons and fold belts of India; Springer, Berlin.

    Google Scholar 

  • Sheppard S, Rasmussen B, Zi J W, Somasekhar V, Sarma S D, Mohan R M, Krapež B, Wilde S A and McNaughton N J 2017 Sedimentation and magmatism in the Paleoproterozoic Cuddapah basin, India: Consequences of lithospheric extension; Gondwana Res. 48 153–163.

    Article  Google Scholar 

  • Upadhyay D 2008 Alkaline magmatism along the southeastern margin of the Indian shield: Implications for regional geodynamics and constraints on craton – Eastern Ghats Belt suturing; Precamb. Res. 162 59–69.

    Google Scholar 

  • Upadhyay D, Gerdes A and Raith M M 2009 Unravelling sedimentary provenance and tectonothermal history of high-temperature metapelites, using zircon and monazite chemistry: A case study from the Eastern Ghats Belt, India; J. Geol. 117 665–683.

    Article  Google Scholar 

  • Vadlamani R 2010 Palaeoproterozoic (1.9 Ga) extension and breakup along the eastern margin of the Eastern Dharwar Craton, SE India: New Sm–Nd isochron age constraints from anorogenic mafic magmatism in the Neoarchean Nellore greenstone belt; J. Asian Earth Sci. 37 67–81.

    Article  Google Scholar 

  • Vadlamani R, Kröner A, Vasudevan D, Wendt I, Tobschall H and Chatterjee C 2012 Zircon evaporation ages and geochemistry of metamorphosed volcanic rocks from the Vinjamuru domain, Krishna Province: Evidence for 1.78 Ga convergent tectonics along the southeastern margin of the Eastern Dharwar Craton; Geol. J. 48 293–309.

  • Van Achterbergh E, Ryan C G, Jackson S E and Griffin W L 2001 LA-ICP-MS in the earth sciences: Appendix 3, data reduction software for LA-ICP-MS; In: Short course Mineralogical Association of Canada (ed.) Sylvester P J, pp. 239–243.

  • Vansutre S and Hari K R 2010 Granulite belts of central India with special reference to the Bhopalpatnam Granulite Belt: Significance in crustal evolution and implications for Columbia supercontinent; J. Asian Earth Sci. 39 794–803.

    Article  Google Scholar 

  • Vansutre S, Hari K R and Vishwakarma N 2013 Implications of geochemistry in support of Palaeo-Proterozoic tectonothermal evolution of Bhopalpatnam Granulite Belt, Bastar Craton, Central India; J. Geol. Soc. India 81 503–513.

    Article  Google Scholar 

  • Vijaya Kumar K and Leelanandam C 2008 Evolution of the Eastern Ghats Belt, India: A plate tectonic perspective; J. Geol. Soc. India 72 720–749.

    Google Scholar 

  • Vijaya Kumar K, Ernst W G, Leelanandam C, Wooden J L and Grove M J 2010 First Paleoproterozoic ophiolite from Gondwana: Geochronologic–geochemical documentation of ancient oceanic crust from Kandra, SE India; Tectonophys. 487 22–32.

    Article  Google Scholar 

  • Vijaya Kumar K, Leelanandam C and Ernst W G 2011 Formation and fragmentation of the Palaeoproterozoic supercontinent Columbia: Evidence from the Eastern Ghats Granulite Belt, southeast India; Int. Geol. Rev. 53 1297–1311.

    Article  Google Scholar 

  • Wang Y, Fan W, Zhao G, Ji S and Peng T 2007 Zircon U–Pb geochronology of gneissic rocks in the Yunkai massif and its implication on the Caledonian event in the South China block; Gondwana Res. 12 404–416.

    Article  Google Scholar 

  • Wang X, Griffin W L, Chen J, Huang P and Li X 2011 U and Th contents and Th/U ratios of zircons in felsic and mafic magmatic rocks: Improved zircon melt distribution coefficients; Acta Geol. Sinica 85 164–174.

    Article  Google Scholar 

  • Yoshida M, Bindu R S, Kagami H, Rajesham T, Santosh M and Shirahata H 1996 Geochronologic constraints of granulite terranes of South India and their implications for the Precambrian assembly of Gondwana; J. Southeast Asian Earth Sci. 14 137–147.

    Article  Google Scholar 

  • Zhang J, Mattinson C G, Meng F, Wan Y and Tung K 2008 Polyphase tectonothermal history recorded in granulitized gneisses from the north Qaidam HP/UHP metamorphic terrane, Western China: Evidence from zircon U–Pb geochronology; Geol. Soc. Am. Bull. 120 732–749.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the management of De Beers Exploration for the permission to publish the data. Two anonymous reviewers are thanked for valuable comments and suggestions that helped us to improve this manuscript. SJ would like to thank Andrew Macdonald for his edits and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sojen Joy.

Additional information

Corresponding editor: N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joy, S., Van Der Linde, G., Choudhury, A.K. et al. Reassembly of the Dharwar and Bastar cratons at ca. 1 Ga: Evidence from multiple tectonothermal events along the Karimnagar granulite belt and Khammam schist belt, southern India. J Earth Syst Sci 127, 76 (2018). https://doi.org/10.1007/s12040-018-0988-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-0988-2

Keywords

Navigation