Skip to main content

Advertisement

Log in

Moisture rainout fraction over the Indian Ocean during austral summer based on \(^{18}\hbox {O}/{}^{16}\hbox {O}\) ratios of surface seawater, rainwater at latitude range of 10°N–60°S

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Oxygen isotope ratios (\(^{18}\hbox {O}/^{16}\hbox {O}\)) of surface seawater and rainwater samples from the Indian Ocean region (10°N–60°S) during austral summer collected onboard ORV Sagar Nidhi during 2011–2013 have been measured along with salinity, sea surface temperature and relative humidity. The rainwater is isotopically lighter (by \(4.6\pm 2.7\permille )\) compared to the equilibrium condensation of the vapour arising from the seawater at the ambient condition. The isotopic composition of the vapour at high altitude responsible for the rain formation at the sampling location is estimated from a global atmospheric water isotope model (IsoGSM2). The apparent deficit of \(\sim \)5\(\permille \) can be explained by invoking a high degree of rainout (on average, about 70% of the overhead atmospheric moisture) during transport of the source vapour to the sampling location undergoing a Rayleigh fractionation. The required rainout fraction is higher (\(\sim \)80%) in the latitude belt 40°–60°S compared to the equatorial belt (\(\sim \)60%). The pattern of variation in the rainout fraction with latitude is consistent with the well-known evaporation/precipitation processes in the Indian Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal P P, Gat J R and Froehlich K F O 2005 Isotopes in the Water Cycle: Past, Present and Future of a Developing Science; Dordrecht: Springer, 381p.

    Book  Google Scholar 

  • Aggarwal P K, Romatschke U, Araguas-Araguas L, Belachew D, Longstaffe F J, Berg P, Schumacher C and Funk A 2016 Proportions of convective and stratiform precipitation revealed in water isotope ratios; Nat. Geosci. 9 624–629.

    Article  Google Scholar 

  • Anilkumar N, Dash M K, Luis A J, Babu V R, Somayajulu Y K, Sudhakar M and Pandey P C 2005 Oceanic fronts along 45 degrees E across Antarctic Circumpolar Current during austral summer 2004; Curr. Sci. 88 1669–1673.

    Google Scholar 

  • Araguás-Araguás L, Froehlich K and Rozanski K 2005 Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture; Hydrol. Process. 14 1341–1355.

    Article  Google Scholar 

  • Benetti M, Reverdin G, Pierre C, Merlivat L, Risi C, Steen-larsen H C and Vimeux F 2014 Deuterium excess in marine water vapour: Dependency on relative humidity and surface wind speed during evapouration; J. Geophys. Res. 119 584–593.

    Google Scholar 

  • Berg W, L’Ecuyer T and Haynes J M 2010 The distribution of rainfall over oceans from spaceborne radars; J. Appl. Meteorol. Climatol. 49(3) 535–543.

    Article  Google Scholar 

  • Bowen G J and B Wilkinson 2002 Spatial distribution of \(\delta ^{18}\text{ O }\) in meteoric precipitation; Geology 30 315–318.

    Article  Google Scholar 

  • Caplan P, Derber J, Gemmill W, Hong S-Y, Pan H L and Parrish D 1997 Changes to the 1995 NCEP operational medium-range forecast model analysis–forecast system Wea. Forecast. 12 581–594.

    Article  Google Scholar 

  • Craig H and Gordon L I 1965 Deuterium and oxygen 18 variations in the ocean and marine atmosphere; In: Proceedings of Stable Isotopes in Oceanographic Studies and Paleotemperatures, 1965, Spoleto, Italy (ed) Tongiogi E, V. Lishi e F., Pisa, pp. 9–130.

  • Criss R E 1999 Principles of Stable Isotope Distribution; Oxford University Press, New York, 254p.

    Google Scholar 

  • Dansgaard W 1964 Stable isotopes in precipitation; Tellus 16 436–468.

    Article  Google Scholar 

  • Ellis T D, L’Ecuyer T, Haynes J M and Stephens G L 2009 How often does it rain over the global oceans? The perspective from CloudSat; Geophys. Res. Lett. 36(3) L03815, https://doi.org/10.1029/2008GL036728.

  • Gat J R 1996 Oxygen and hydrogen isotopes in the hydrologic cycle; Ann. Rev. Earth Planet. Sci. 24 225–262, 10.1146/annurev.earth.24.1.225.

  • Gat J R, Mook W G and Meijer H A 2001 Environmental isotopes in the hydrological cycle-principles and applications; IHP-V I Technical Documents in Hydrology I No. 39, Vol. II, UNESCO, Paris.

  • Goosse H, Mann M E and Renssen H 2008 What we can learn from combining paleoclimate proxy data and climate model simulations of past centuries; In: Natural Climate Variability and Global Warming: A Holocene Perspective (eds) Battarbee R W and Binney H A, Blackwell, Oxford.

    Google Scholar 

  • Horita J and Wesolowski D J 1994 Liquid-vapour fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature; Geochim. Cosmochim. Acta 58 3425–3437.

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang S K, Hnilo J J, Fiorino M and Potter G L 2002 NCEP-DOE AMIP-II reanalysis (R-2); Bull. Am. Meteorol. Soc. 83 1631–1643.

    Article  Google Scholar 

  • Krishnamurthy R V and Bhattacharya S K 1991 Stable oxygen and hydrogen isotope ratios in shallow ground waters from India and a study of the role of evapotranspiration in the Indian monsoon; In: Stable Isotope Geochemistry: A Tribute to Samuel Epstein (eds) H P Taylor, J R O’Neil, and I R Kaplan, Special Publication, pp. 187–193.

  • Laederach A and Sodemann H 2016 A revised picture of the atmospheric moisture residence time; Geophys. Res. Lett. 43 924–933.

    Article  Google Scholar 

  • LeGrande A N and Schmidt G A 2006 Global gridded data set of the oxygen isotopic composition in seawater; Geophys. Res. Lett. 33 L12604, https://doi.org/10.1029/2006GL026011.

  • Merlivat L and Jouzel J 1979 Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation; J. Geophys. Res. Oceans 84(C8) 5029–5033.

    Article  Google Scholar 

  • McCoy D T, Hartmann D L and Grosvenor D P 2014a Observed Southern Ocean cloud properties and shortwave reflection. Part I: calculation of SW flux from observed cloud properties; J. Clim. 27 8836–8857.

    Article  Google Scholar 

  • McCoy D T, Hartmann D L and Grosvenor D P 2014b Observed Southern Ocean cloud properties and shortwave reflection. Part II: Phase changes and low cloud feedback; J. Clim. 27 8858–8868.

    Article  Google Scholar 

  • Morrison A E, Siems S T and Manton M J 2011 A three-year climatology of cloud-top phase over the Southern Ocean and North Pacific; J. Clim. 24 2405–2418.

    Article  Google Scholar 

  • Nakamura K, Aoki S, Yoshimura K and Kurita N 2014 Distribution of oxygen isotope ratio of precipitation in the Atlantic-Indian sectors of the Southern Ocean; Sola 10 154–157.

    Article  Google Scholar 

  • Pokhrel S, Rahaman H, Parekh A, Saha S, Dhakate A, Chaudhari H and Gairola R 2012 Evaporation-precipitation variability over Indian Ocean and its assessment in NCEP Climate Forecast System (CFSv2); Clim. Dyn. 39, https://doi.org/10.1007/s00382-012-1542-6.

  • Rahul P, Prasanna K, Ghosh P, Anilkumar N and Yoshimura K 2018 Stable isotopes in water vapor and rainwater over Indian sector of Southern Ocean and estimation of fraction of recycled moisture. Sci. Rep. 8 7552, https://doi.org/10.1038/s41598-018-25522-5.

  • Rangarajan R and Ghosh P 2011 Role of water contamination within the GC column of a GasBench II peripheral on the reproducibility of O-18/O-16 ratios in water samples; Isot. Environ. Health Stud. 47 498–511.

    Article  Google Scholar 

  • Rozanski K, Araguás-Araguás L and Gonfiantini R 1993 Isotopic patterns in modern global precipitation; Climate Change in Continental Isotopic Records, pp. 1–36.

  • Schmidt G A, Bigg G R and Rohling E J 1999 Global Seawater Oxygen-18 Database – v1.21.

  • Schmitt R W 1995 The ocean component of the global water cycle; Rev. Geophys. 33(S2) 1395–1409.

    Article  Google Scholar 

  • Sparrow M D, Heywood K J, Brown J and Stevens D P 1996 Current structure of the south Indian Ocean; J. Geophys. Res. 101 6377–6391.

    Article  Google Scholar 

  • Srivastava R, Ramesh R, Jani R A, Anilkumar N and Sudhakar M 2010 Stable oxygen, hydrogen isotope ratios and salinity variations of the surface Southern Indian Ocean waters; Curr. Sci. 99 1395–1399.

    Google Scholar 

  • Srivastava R, Ramesh R, Prakash S, Anilkumar N and Sudhakar M 2007 Oxygen isotope and salinity variations in the Indian sector of the Southern Ocean; Geophys. Res. Lett. 34.

  • Tiwari M, Nagoji S S, Kartik T, Drishya G, Parvathy R K and Rajan S 2013 Oxygen isotope–salinity relationships of discrete oceanic regions from India to Antarctica vis-à-vis surface hydrological processes; J. Mar. Syst. 113 88–93.

    Article  Google Scholar 

  • Uemura R, Matsui Y, Yoshimura K, Motoyama H and Yoshida N 2008 Evidence of deuterium excess in water vapour as an indicator of ocean surface conditions; J. Geophys. Res. 113 D19114, https://doi.org/10.1029/2008JD010209.

  • Von Storch H, Langenberg H and Feser F 2000 A spectral nudging technique for dynamical downscaling purposes; Mon. Weather Rev. 128 3664–3673.

    Article  Google Scholar 

  • Worden H M, Logan J A, Worden J R, Beer R, Bowman K, Clough S A, Eldering A, Fisher B M, Gunson M R, Herman R L and Kulawik SS 2007 Comparisons of Tropospheric Emission Spectrometer (TES) ozone profiles to ozonesondes: Methods and initial results. J. Geophys. Res. Atmos. 112(D3)

  • Xi Xi 2014 A review of water isotopes in atmospheric general circulation models: Recent advances and future prospects; Int. J. Atmos. Sci., Article ID 250920, https://doi.org/10.1155/2014/250920.

  • Yoshimura K and Kanamitsu M 2008 Dynamical global downscaling of global reanalysis; Mon. Weather Rev. 136 2983–2998.

    Article  Google Scholar 

  • Yoshimura K, Kanamitsu M, Noone D and Oki T 2008 Historical isotope simulation using reanalysis atmospheric data; J. Geophys. Res. 113 D19108, https://doi.org/10.1029/2008JD010074.

Download references

Acknowledgements

Author PK is grateful to Prof. Sunil Bajpai, Director BSIP for providing all necessary facilities and permission to publish the manuscript. All the authors thank Ministry of Earth Sciences, Government of India for providing financial support and crews of ORV Sagar Nidhi for onboard help. Authors PK, RP, PG and SKB thank Divecha Centre for Climate Change, IISc Bangalore for support. We note that there are no data sharing issues since all of the numerical information is provided in figures and tables in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Prasanna.

Additional information

Corresponding editor: D Shankar

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 805 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasanna, K., Ghosh, P., Bhattacharya, S.K. et al. Moisture rainout fraction over the Indian Ocean during austral summer based on \(^{18}\hbox {O}/{}^{16}\hbox {O}\) ratios of surface seawater, rainwater at latitude range of 10°N–60°S. J Earth Syst Sci 127, 60 (2018). https://doi.org/10.1007/s12040-018-0960-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-0960-1

Keywords

Navigation