Advertisement

Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian river basins during 1985–2005 using variable infiltration capacity approach

  • Pulakesh Das
  • Mukunda Dev Behera
  • Nitesh Patidar
  • Bhabagrahi Sahoo
  • Poonam Tripathi
  • Priti Ranjan Behera
  • S K Srivastava
  • Partha Sarathi Roy
  • Praveen Thakur
  • S P Agrawal
  • Y V N Krishnamurthy
Article

Abstract

As a catchment phenomenon, land use and land cover change (LULCC) has a great role in influencing the hydrological cycle. In this study, decadal LULC maps of 1985, 1995, 2005 and predicted-2025 of the Subarnarekha, Brahmani, Baitarani, Mahanadi and Nagavali River basins of eastern India were analyzed in the framework of the variable infiltration capacity (VIC) macro scale hydrologic model to estimate their relative consequences. The model simulation showed a decrease in ET with 0.0276% during 1985–1995, but a slight increase with 0.0097% during 1995–2005. Conversely, runoff and base flow showed an overall increasing trend with 0.0319 and 0.0041% respectively during 1985–1995. In response to the predicted LULC in 2025, the VIC model simulation estimated reduction of ET with 0.0851% with an increase of runoff by 0.051%. Among the vegetation parameters, leaf area index (LAI) emerged as the most sensitive one to alter the simulated water balance. LULC alterations via deforestation, urbanization, cropland expansions led to reduced canopy cover for interception and transpiration that in turn contributed to overall decrease in ET and increase in runoff and base flow. This study reiterates changes in the hydrology due to LULCC, thereby providing useful inputs for integrated water resources management in the principle of sustained ecology.

Keywords

VIC model land use Mahanadi River basin hydrograph ILULC-DMP decadal scale 

Notes

Acknowledgements

Thanks are due to IIRS for all the necessary facilities provided for this research work. The ILULC-DMP modeling platform provided for LULC modeling and prediction, and their expert opinion were precious and valuable.

Supplementary material

12040_2018_921_MOESM1_ESM.pdf (263 kb)
Supplementary material 1 (pdf 262 KB)
12040_2018_921_MOESM2_ESM.jpg (465 kb)
Supplementary material 2 (jpg 465 KB)
12040_2018_921_MOESM3_ESM.jpg (164 kb)
Supplementary material 3 (jpg 163 KB)
12040_2018_921_MOESM4_ESM.jpg (299 kb)
Supplementary material 4 (jpg 299 KB)

References

  1. Abbott M B, Bathurst J C, Cunge J A, O’Connell P E and Rasmussen J 1986 An introduction to the European hydrological system – Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system; J. Hydrol. 87(1) 45–59.CrossRefGoogle Scholar
  2. Aggarwal S P, Garg V, Gupta P K, Nikam B R and Thakur P K 2012 Climate and LULC change scenarios to study its impact on hydrological regime; Int. Arch Photogram Rem. Sen. Spa. Inf. Sci. (ISPRS) 39 B8.Google Scholar
  3. Alcamo J and Henrichs T 2002 Critical regions: A model-based estimation of world water resources sensitive to global changes; Aquat. Sci. 64(4) 352–362.CrossRefGoogle Scholar
  4. Alcamo J, Grassl H, Hoff H, Kabat P, Lansigan F, Lawford R, Lettenmaier D, Lévêque C, Meybeck M, Naiman R and Pahl-Wostl C 2005 The global water ssystem project: Science framework and implementation activities; Earth System Science Partnership, Bonn, Germany.Google Scholar
  5. Arnold J G, Srinivasan R, Muttiah R S and Williams J R 1998 Large area hydrologic modelling and assessment. Part 1: Model development; J. Am. Water Resour. Assoc. 34(1) 73–89.CrossRefGoogle Scholar
  6. Asrar G and Dozier J 1994 EOS: Science Strategy for the Earth Observing System; Woodbury, NY, American Institute of Physics.Google Scholar
  7. Babar S and Ramesh H 2015 Streamflow response to land use-land cover change over the Nethravathi River Basin, India; J. Hydrol. Eng. 20(10),  https://doi.org/10.1061/(ASCE)HE1943-55840001177.
  8. Behera M D, Tripathi P, Das P, Srivastava S K, Roy P S, Joshi C, Behera P R, Deka J, Kumar P, Khan M L, Tripathi O P, Dash T and Krishnamurthy Y V N 2018 Remote sensing based deforestation analysis in Mahanadi and Brahmaputra river basin in India since 1985; J. Environ. Manag. 206 1192–1203.Google Scholar
  9. Beyene T, Lettenmaier D P and Kabat P 2010 Hydrologic impacts of climate change on the Nile River basin: Implications of the 2007 IPCC scenarios; Clim. Chang. 100(34) 433–461.CrossRefGoogle Scholar
  10. Bhagwat P P and Maity R 2013 Hydroclimatic streamflow prediction using least square-support vector regression ISH; J. Hydrol. Eng. 19(3) 320–328.Google Scholar
  11. Bhattacharya T, Aggarwal S P and Garg V 2013 Estimation of water balance components of Chambal River basin using a macroscale hydrology model; Int. J. Sci. Res. Pub. 3(2) 1–6.Google Scholar
  12. Bonan G B, Pollard D and Thompson S L 1992 Effects of boreal forest vegetation on global climate; Nature 359 716–718,  https://doi.org/10.1038/359716a0.CrossRefGoogle Scholar
  13. Bosch J M and Hewlett J D 1982 A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration; J. Hydrol. 55 3–23.CrossRefGoogle Scholar
  14. Brown T C 2000 Projecting US freshwater withdrawals; Water Resour. Res. 36(3) 769–780.CrossRefGoogle Scholar
  15. Calder I R 1992 Water Use of Eucalypts – A Review (No CONF-9102202–); John Wiley and Sons, New York, NY (United States).Google Scholar
  16. Chahine M T 1992 The hydrologic cycle and its influence on climate; Nature 359 373–380.CrossRefGoogle Scholar
  17. Collischonn B, Collischonn W and Tucci CE 2008 Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates; J. Hydrometeorol. 360(1) 207–216.Google Scholar
  18. Cosby B J, Hornberger G M, Clamp R B and Ginn T R 1984 A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils; Water Resour. Res. 20(6) 682–690.CrossRefGoogle Scholar
  19. Dadhwal V K, Aggarwal S P and Mishra N 2010 Hydrological simulation of Mahanadi River basin and impact of land use/land cover change on surface runoff using a macro scale hydrological model; ISPRS TC VII Symposium, Vienna, Austria, IAPRS, Vol XXXVIII, Part 7B.Google Scholar
  20. Defries R S, Bounoua L and Collatz G J 2002 Human modifi-cation of the landscape and surface climate in the next fifty years; Global Change Biol. 8 438–458,  https://doi.org/10.1046/j1365-2486200200483x.CrossRefGoogle Scholar
  21. Dhami B S and Pandey A 2013 Comparative review of recently developed hydrologic models; J. Indian Water Resour. Soc. 33(3) 34–42.Google Scholar
  22. Dietz A, Künzer C, Gessner U and Dech S 2012 Remote sensing of snow – a review on available methods; Int. J. Remote Sens. 33 (13) 4094–4134.CrossRefGoogle Scholar
  23. Dumenil L and Todini E 1992 A rainfall-runoff scheme for use in the Hamburg climate model; In: Advances in Theoretical Hydrology; Eur. Geop. Soc. Ser. Hydrol. Sci. 1 129–157.Google Scholar
  24. Favreau G, Caelaere B, Massuel, S, Leblanc M, Boucher M, Boulain N and Leduc C 2009 Land clearing, climate variability, and water resources increase in semi-arid southwest Niger: A review; Water Resour. Res. 45 7,  https://doi.org/10.1029/2007WR006785.CrossRefGoogle Scholar
  25. Frans C, Istanbulluoglu E, Mishra V, Munoz-Arriola F and Lettenmaier D P 2013 Are climatic or land cover changes the dominant cause of runoff trends in the Uer Mississii River Basin; Geophys. Res. Lett. 40(6) 1104–1110.CrossRefGoogle Scholar
  26. Gao H et al. 2009 Water budget record from variable infiltration capacity (VIC) model algorithm theoretical basis document; Dept. Civil and Environmental Eng., Univ. Washington, Seattle, WA, 09–18.Google Scholar
  27. Garg V, Khwanchanok A, Gupta P K, Aggarwal S P, Kiriwongwattana K, Thakur P K and Nikam B R 2012 Urbanisation effect on hydrological response: A case study of Asan River Watershed, India; J. Environ. Earth Sci. 2(9) 39–50.Google Scholar
  28. Geethalakshmi V, Kitterod N O and Lakshmanan A 2008 A literature review on modeling of hydrological processes and feedback mechanisms on climate; CLIMARICE Report No. 2, 48 s.Google Scholar
  29. Henderson-Sellers A, Dickinson R E, Durbridge T, Kennedy P, McGuffie K and Pitman A 1993 Tropical deforestation: Modeling local- to regional-scale climate change; J. Geophys. Res. Atmos. 98(D4) 7289–7315,  https://doi.org/10.1029/2JD02830.CrossRefGoogle Scholar
  30. Koster R D, Dirmeyer P A, Guo Z C, Bonan G, Chan E, Cox P, Gordon C T, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu C H, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud Y C, Taylor C M, Verseghy D, Vasic R, Xue Y K, Yamada T and Team G 2004 Regions of strong coupling between soil moisture and precipitation; Science 305 1138–1140.CrossRefGoogle Scholar
  31. Lawrence K T, Sosdian S, White H E and Rosenthal Y 2010 North Atlantic climate evolution through the Plio-Pleistocene climate transitions; Earth Planet. Sci. Lett. 300(3) 329–342.CrossRefGoogle Scholar
  32. Li L, Hong Y, Wang J H, Adler R F, Policelli F S, Habib S, Irwn D, Korme T and Okello L 2009a Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria; Africa Nat. Hazards 50 109–123,  https://doi.org/10.1007/s11069-008-9324-5.CrossRefGoogle Scholar
  33. Li Z, Liu W Z, Zhang X C and Zheng F L 2009b Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China; J. Hydrol. 377 35–42,  https://doi.org/10.1016/jjhydrol200908007.CrossRefGoogle Scholar
  34. Liang X, Lettenmaier D P, Wood E F and Burges S J 1994 A simple hydrologically based model of land surface water and energy fluxes for GSMs; J. Geophys. Res. 99(D7) 14,415–14,428.CrossRefGoogle Scholar
  35. Lohmann D, Nolte-Holube R and Raschke E 1996 A large-scale horizontal routing model to be coupled to land surface parametrization schemes; Tellus 48(A) 708–721.CrossRefGoogle Scholar
  36. Lohmann D, Raschke E, Nijssen B and Lettenmaier D P 1998 Regional scale hydrology: II Application of the VIC-2L model to the Weser River, Germany; Hydrol. Sci. J. 43(1) 143–158.CrossRefGoogle Scholar
  37. Lorup J K, Refsgaard J C and Mazvimari D 1998 Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling: Case studies from Zimbabwe; J. Hydrol. 205 147–163.CrossRefGoogle Scholar
  38. Mao D and Cherkauer K A 2009 Impacts of land-use change on hydrologic responses in the Great Lakes region; J. Hydrol. 374(1–2) 71–82.CrossRefGoogle Scholar
  39. Marengo J A 2006 On the hydrological cycle of the Amazon Basin: A historical review and current state-of-the-art; Rev. Bras. Meteorol. 21(3) 1–9.Google Scholar
  40. Markstrom S L, Regan R S, Hay L E, Viger R J, Webb R M T, Payn R A and LaFontaine J H 2015 PRMS-IV, the precipitation-runoff modeling system; Ver. 4, US Geological Survey Techniques and Methods.Google Scholar
  41. Mishra N 2008 Macroscale hydrological modelling and impact of land cover change on streamflows of the Mahanadi River Basin; M. Tech. dissertation, Indian Institute of Remote Sensing (ISRO).Google Scholar
  42. Muñoz-Arriola F, Avissar R, Zhu C and Lettenmaier D P 2009 Sensitivity of the water resources of Rio Yaqui Basin, Mexico, to agriculture extensification under multiscale climate conditions; Water Resour. Res. 45(11),  https://doi.org/10.1029/2007WR006783.
  43. Nash J E and Sutcliffe J V 1970 River flow forecasting through conceptual models. Part I: A discussion of principles; J. Hydrol. 10 282–290.Google Scholar
  44. Patidar N and Behera M D 2018 How significantly do land use and land cover (LULC) changes influence the water balance of a river basin? A study in Ganga river basin, India; Proc. Nat. Acad. Sci., India. Sect. A. Phis. Sci., https://doi.org/10.1007/s40010-017-0426-x.
  45. Pielke R A 2005 Land use and climate change; Science 310(5754) 1625–1626.CrossRefGoogle Scholar
  46. Roy P S et al. 2015 Development of decadal (1985–1995–2005) land use and land cover database for India; Remote Sens. 7(3) 2401–2430.CrossRefGoogle Scholar
  47. Singh V K 2014 An algorithm development using agent-based modeling and simulation for land use land cover change under geospatial framework; Doctoral dissertation, Indian Institute of Remote Sensing (ISRO), Dehradun, 90p.Google Scholar
  48. Schilling K E 2005 Relation of baseflow to row crop intensity in Iowa; Agr. Ecosyst. Environ. 105(1) 433–438.CrossRefGoogle Scholar
  49. Schilling K E, Jha M K, Zhang Y K, Gassman P W and Wolter C F 2008 Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions; Water Resour. Res. 44(7),  https://doi.org/10.1029/2007WR006644.
  50. Seneviratne S I, Corti T, Davin E L, Hirschi M, Jaeger E B, Lehner I, Orlowsky B and Teuling A J 2010 Investigating soil moisture–climate interactions in a changing climate: A review; Earth-Sci. Rev. 99(3) 125–161,  https://doi.org/10.1016/jearscirev201002004.CrossRefGoogle Scholar
  51. Shi X, Wild M and Lettenmaier D P 2010 Surface radiative fluxes over the pan-Arctic land region: Variability and trends; J. Geophys. Res. Atmos. 115(D22),  https://doi.org/10.1029/2010JD014402.
  52. Shukla S, Steinemann A C and Lettenmaier DP 2011 Drought monitoring for Washington State: Indicators and applications; J. Hydrometeorol. 12(1) 66–83.CrossRefGoogle Scholar
  53. Tang Q, Gao H, Lu H and Lettenmaier D P 2009 Remote sensing: Hydrology; Prog. Phys. Geog. 33 490–509.CrossRefGoogle Scholar
  54. Tang Q, Gao H, Yeh P, Oki T, Su F and Lettenmaier D P 2010 Dynamics of terrestrial water storage change from satellite and surface observations and modeling; J. Hydrometeorol. 11(1) 156–170.CrossRefGoogle Scholar
  55. Twine T E, Kucharik C J and Foley J A 2004 Effects of land cover change on the energy and water balance of the Mississippi river basin; J. Hydrometeorol. 5(4) 640–655.CrossRefGoogle Scholar
  56. Vörösmarty C, Lettenmaier D, Leveque C, Meybeck M, Pahl-Wostl C, Alcamo J, Cosgrove W, Grassl H, Hoff H, Kabat P and Lansigan F 2004 Humans transforming the global water system; EOS Trans. Am. Geophys. Union 85(48) 509–514.CrossRefGoogle Scholar
  57. Wagner P D, Kumar S and Schneider K 2013 An assessment of land use change impacts on the water resources of the Mula and Mutha rivers catchment upstream of Pune, India; Hydrol. Earth Syst. Sci. 17(6) 2233–2246,  https://doi.org/10.5194/hess-17-2233-2013.CrossRefGoogle Scholar
  58. Wang L and Qu J J 2009 Satellite remote sensing applications for surface soil moisture monitoring: A review; Front. Earth Sci. China 3 237–247.CrossRefGoogle Scholar
  59. White R, Uljee I and Engelen G 2012 Integrated modelling of population, employment and land-use change with a multiple activity-based variable grid cellular automaton; Int. J. Geogr. Inf. Sci. 26(7) 1251–1280.CrossRefGoogle Scholar
  60. Xu X, Li J and Tolson B A 2014 Progress in integrating remote sensing data and hydrologic modeling; Progr. Phys. Geogr. 38(4) 464–498,  https://doi.org/10.1177/0309133314536583.CrossRefGoogle Scholar
  61. Yuan F, Xie Z H and Liu Q 2004 An application of the VIC-3l land surface model and remote sensing data in simulating streamflow for the Hanjiang river basin; Can. J. Remote Sens. 30(5) 680–690.CrossRefGoogle Scholar
  62. Zhang Y K and Schilling K E 2006 Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: a field observation and analysis; J. Hydrol. 319(1) 328–338.CrossRefGoogle Scholar
  63. Zhao R J, Zhang Y L and Fang L R 1980 The Xinanjiang model; In: Hydrological Forecasting Proceedings; Oxford 129 351–356.Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Pulakesh Das
    • 1
  • Mukunda Dev Behera
    • 1
  • Nitesh Patidar
    • 2
  • Bhabagrahi Sahoo
    • 3
  • Poonam Tripathi
    • 1
  • Priti Ranjan Behera
    • 3
  • S K Srivastava
    • 4
  • Partha Sarathi Roy
    • 5
  • Praveen Thakur
    • 4
  • S P Agrawal
    • 4
  • Y V N Krishnamurthy
    • 6
  1. 1.Centre for Oceans, Rivers, Atmosphere and Land SciencesIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Civil Engineering DepartmentIndian Institute of Technology DelhiNew DelhiIndia
  3. 3.School of Water ResourcesIndian Institute of Technology KharagpurKharagpurIndia
  4. 4.Indian Institute of Remote Sensing (ISRO)DehradunIndia
  5. 5.University of HyderabadHyderabadIndia
  6. 6.National Remote Sensing CentreHyderabadIndia

Personalised recommendations