Skip to main content
Log in

Petrography and geochemistry of the Middle Miocene Gebel El Rusas sandstones, Eastern Desert, Egypt: Implications for provenance and tectonic setting

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Petrography and bulk rock geochemistry of the Middle Miocene sandstones of the lower and upper members of Gebel El Rusas Formation along the Egyptian Red Sea Coastal plain, have been investigated to determine the provenance, tectonic setting, and weathering condition of this formation. The Lower Member is formed mainly of sandstones and conglomerates with clay interbeds. The Upper Member is more calcareous and formed mainly of sandstones and limestones with marls and clays intercalations. Petrographically, the Lower Member sandstones are mostly immature and classified as arkoses with an average framework composition of \(\hbox {Q}_{66}\hbox {F}_{29}\hbox {R}_{5}\), and the Upper Member sandstones are partly submature (more quartzose, less feldspathic) and classified as subarkoses with an average framework composition of \(\hbox {Q}_{80}\hbox {F}_{17}\hbox {R}_{3}\). The Gebel El Rusas sandstones are enriched in Sr, Ba, Zr and Rb and depleted in Co and U, as compared to UCC. The chemical index of alteration (CIA) values suggest moderate weathering conditions. The geochemistry results revealed that the Gebel El Rusas sandstones were derived from felsic-granitic source rocks and deposited in a passive margin of a synrift basin. The inferred tectonic setting for Middle Miocene Gebel El Rusas sandstones in the study area is consistent with the regional geology of the Eastern Desert of Egypt during Middle Miocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abu-Zeid M M, Amer K M and El-Mohammady R A 1989 Petrology, mineralogy and provenance of sandstones of ‘Nubia’ facies in west central Sinai; Earth Sci. Ser. 3. Middle East Research Centre, Ain Shams University, Cairo, pp. 20–34.

    Google Scholar 

  • Abu-Zeid M M, Amer K M, Yanni N N and El-Wekeil S S 1991 Petrology, mineralogy and sedimentation of the Paleozoic sequence of Gabal Qattar, Wadi Feiran, Sinai, Egypt; J. Geol. 34 145–169.

    Google Scholar 

  • Ahmedali S T 1989 X-ray fluorescence analysis in the geological sciences; Advances in Methodology, Geological Association of Canada, 7 308p.

  • Akarish A I M and El-Gohary A M 2008 Petrography and geochemistry of lower Paleozoic sandstones East Sinai, Egypt: Implications for provenance and tectonic setting; J. Afr. Earth Sci. 52 43–54.

    Article  Google Scholar 

  • Amer K M, Abu-Zeid M M and El-Mohammady R A 1989 Particle-size distribution and depositional environment of the sandstones of “Nubia” facies in west central Sinai; Earth Sci. Ser. 3, Middle East Research Centre, Ain Shams University, Cairo, pp. 146–160.

  • Armstrong-Altrin J S 2015 Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks; Int. Geol. Rev. 57 1444–1459.

    Article  Google Scholar 

  • Armstrong-Altrin J S and Verma S P 2005 Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic setting; Sedim. Geol. 177 115–129.

    Article  Google Scholar 

  • Armstrong-Altrin J S, Lee Y I, Verma S P and Ramasamy S 2004 Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering, and tectonic setting; J. Sedim. Res. 74 285–297.

    Article  Google Scholar 

  • Armstrong-Altrin J S, Lee Y I, Kasper-Zubillaga J J, Carranza-Edwards A, Garcia D, Eby N, Balaram V and Cruz-Ortiz N L 2012 Geochemistry of beach sands along the western Gulf of Mexico, Mexico: Implication for provenance; Chem. Erde/Geochem. 72 345–362.

    Google Scholar 

  • Armstrong-Altrin J S, Nagarajan R, Madhavaraju J, Rosalez-Hoz L, Lee Y I, Balaram V, Cruz-Martinez A and Avila-Ramirez G 2013 Geochemistry of the Jurassic and upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico: Implications of source-area weathering, provenance, and tectonic setting; Comptes Rendus Geosci. 345 185–202.

    Article  Google Scholar 

  • Armstrong-Altrin J S, Machain-Castillo M L, Rosales-Hoz L, Carranza-Edwards A, Sanchez-Cabeza J A and Ruíz-Fernández A C 2015a Geochemistry of deep sea sediments from the south-western Gulf of Mexico, Mexico: Implication for depositional environment; Cont. Shelf Res., doi: 10.1016/j.csr.2015.01.003.

  • Armstrong-Altrin J S, Nagarajan R, Balaram V and Natalhy-Pineda O 2015b Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: Constraints on provenance and tectonic setting; J. South Am. Earth Sci. 64 199–216.

    Article  Google Scholar 

  • Armstrong-Altrin J S, Lee Y I, Kasper-Zubillaga J J and Trejo-Ramirez E 2016 Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: Implication for palaeoweathering, provenance, and tectonic setting; Geol. J., doi: 10.1002/gj.2792.

  • Basu A, Young S, Suttner L J, James W C and Mack C H 1975 Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation; J. Sedim. Petrol. 45 873–882.

    Google Scholar 

  • Bhatia M R 1983 Plate tectonics and geochemical composition of sandstones; J. Geol. 91 611–627.

    Article  Google Scholar 

  • Bhatia M R and Crook K A W 1986 Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins; Contrib. Mineral. Petrol. 92 181–193.

    Article  Google Scholar 

  • Blatt H, Middleton G and Murray R 1980 Origin of sedimentary rocks; Prentice-Hall, New Jersey.

    Google Scholar 

  • Conoco 1987 Geological map of Egypt (scale 1:500,000), NG 36 SE Gebel Hamata.

  • Cox R, Lowe D R and Cullers R L 1995 The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States; Geochim. Cosmochim. Acta 59 2919–2940.

    Article  Google Scholar 

  • Cullers R L 1994 The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian–Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA; Geochim. Cosmochim. Acta 58 4955–4972.

    Article  Google Scholar 

  • Cullers R L 2000 The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: Implications for provenance and metamorphic studies; Lithos 51 181–203.

    Article  Google Scholar 

  • Cullers R L and Podkovyrov V N 2000 Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling; Precamb. Res. 104 77–93.

    Article  Google Scholar 

  • Davis J C 1986 Statistics and data analysis in Geology; John Wiley & Sons. Inc., New York.

    Google Scholar 

  • Dickinson W R 1970 Interpreting detrital modes of greywacke and arkose; J. Sedim. Petrol. 40 695–707.

    Google Scholar 

  • Dickinson W R, Beard L S, Brakenridge G R, Erjavec J L, Ferguson R C, Inman K F, Knepp R A, Lindberg F A and Ryberg P T 1983 Provenance of North American Phanerozoic sandstones in relation to tectonic setting; Geol. Soc. Am. Bull. 94 222–235.

    Article  Google Scholar 

  • Dott R H 1964 Wackes, greywacke and matrix: What approach to immature sandstone classification; J. Sedim. Petrol. 34 625–632.

    Google Scholar 

  • El-Akkad S and Dardir A A 1966 Geology of the Red Sea Coast between Ras Shagra and Mersa Alam with short notes on results of exploratory work at Gabal EI-Rusas lead-zinc deposits; Geol. Surv. Egypt 35 1–67.

    Google Scholar 

  • Etemad-Saeed N, Hosseini-Barzi M and Armstrong Altrin J S 2011 Petrography and geochemistry of clastic sedimentary rocks as evidences for provenance of the Lower Cambrian Lalun Formation, Posht-e-badam block, Central Iran; J. Afr. Earth Sci. 61 142–159.

    Article  Google Scholar 

  • Etemad-Saeed N, Hosseini-Barzi M, Edabi M H, Sadeghi A and Houshmandzadeh A 2015a Provenance of Neoproterozoic sedimentary basement of northern Iran, Kahar Formation; J. Afr. Earth Sci. 111 54–75.

    Article  Google Scholar 

  • Etemad-Saeed N, Hosseini-Barzi M, Edabi M H, Miller N R, Sadeghi A, Houshmandzadeh A and Stockli D F 2015b Evidence for Ca. 560 Ma Ediacaran glaciation in the Kahar formation, Central Alborz Mountains, northern Iran; Gondwana Res., doi: 10.1016/d.gr2015.01.005.

  • Garver J I, Royce P R and Smick T A 1996 Chromium and nickel in shale of the Taconic Foreland: A case study for the provenance of fine-grained sediments with an ultramafic source; J. Sedim. Res. 66 100–106.

    Google Scholar 

  • Gazzi P 1966 Le arenarie del fl ysch sopracretaceo dell’Appennino modensese: Correlazioni con il fl ysch di Monghidoro; Mineral. Petrogr. Acta 12 69–97.

    Google Scholar 

  • Ingersoll R V, Bulard T F, Ford R L, Grimn J P, Pickle J P and Sares S W 1984 The effect of grain size on detrital modes: A text of the Gazzi–Dickinson Point Counting method; J. Sedim. Petrol. 54 103–116.

    Google Scholar 

  • Issawi B, Francis M H, Youssef E A A and Osman R A 2009 The Phanerozoic geology of Egypt, a geodynamic approach; 2nd edn, The Egyptian Mineral Resources Authority, 81 589p.

  • Keller W D 1956 Clay minerals as influenced by environments of their formation; Am. Assoc. Petrol. Geol. 40 2689–2710.

    Google Scholar 

  • Kora M and Abdel-Fattah Z 2000 Pliocene and Plio-Pleistocene macrofauna from the Red Sea coastal plain (Egypt): Biostratigraphy and biogeography; Geol. Palaeontol. 34 219–235.

    Google Scholar 

  • Liu B, Jin H L, Sun Z, Niu Q H and Zhang C X 2015 Geochemical characteristics of Holocene Aeolian deposits and their environmental significance in the Mu Us desert, northern China; Geol. J., doi: 10.1002/gj.2630.

  • Lonnie T P 1982 Mineralogic and chemical composition of marine and non-marine transitional clay beds on south shore of Long Island, New York; J. Sedim. Petrol. 52 529–536.

    Google Scholar 

  • Lozano R and Bernal JP 2005 Characterization of a new set of eight geochemical reference materials for XRF major and trace element analysis; Rev. Mex. Cien. Geol. 22 329–344.

    Google Scholar 

  • Madhavaraju J 2015 Geochemistry of Late Cretaceous sedimentary rocks of the Cauvery Basin, south India: Constraints on paleoweathering, provenance and end Cretaceous environments; In: Chemostratigraphy: Concepts, techniques and applications (ed.) Ramkumar M, Elsevier, The Netherlands, 1st edn, pp. 185–214.

  • McBride E F 1963 A classification of common sandstones; J. Sedim. Petrol. 33 664–669.

    Google Scholar 

  • McLennan S M, Taylor S R and Eriksson K A 1983 Geochemistry of Archaean shales from the Pilbara Supergroup, western Australia; Geochim. Cosmochim. Acta 47 1211–1222.

    Article  Google Scholar 

  • McLennan S M, Hemming S, McDaniel D K and Hanson G N 1993 Geochemical approaches to sedimentation, provenance, and tectonics; In: Processes controlling the composition of clastic sediments (eds) Johnsson M J and Basu A; Geol. Soc. Am. Spec. Paper, pp. 21–40.

  • Migani F, Borghesi F and Dinelli E 2015 Geochemical characterization of surface sediments from the northern Adriatic wetlands around the Po river delta, Part 1: Bulk composition and relation to local background; J. Geochem. Explor. 156 72–88.

    Article  Google Scholar 

  • Nagarajan R, Armstrong-Altrin J S, Kessler F L, Hidalgo-Moral E L, Dodge-Wan D and Taib N I 2015 Provenance and tectonic setting of Miocene siliciclastic sediments, Sibuti Formation, northwestern Borneo; Arab. J. Geosci. 8(10) 8549–8565.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1982 Early Proterozoic climates and plate motions inferred from major element chemistry of lutites; Nature 299 715–717.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1984 Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations; Geochim. Cosmochim. Acta 48 1523–1534.

    Article  Google Scholar 

  • Odoma A N, Obaje N G, Omado J I, Idakwo S O and Erbacher J 2015 Mineralogical, chemical composition and distribution of rare earth elements in clay-rich sediments from southeastern Nigeria; J. Afr. Earth Sci. 102 50–60.

  • Osae S, Asiedu D K, Banoeng-Yakubo B, Koeberl C and Dampare S B 2006 Provenance and tectonic setting of Late Proterozoic Buem sandstones of southeastern Ghana: Evidence from geochemistry and detrital modes; J. Afr. Earth Sci. 44 85–96.

    Article  Google Scholar 

  • Potter P E 1978 Petrology and chemistry of modern Big River sands; J. Geol. 86 423–449.

    Article  Google Scholar 

  • Purser B and Philobbos E 1993 The sedimentary expressions of rifting in the NW Red Sea, Egypt; Geol. Soc. Am. Spec. Paper 1 1–46.

    Google Scholar 

  • Rahman M J J, Sayem A S M and McCann T 2014 Geochemistry and provenance of the Miocene sandstones of the Surma Group from the Sitapahar anticline, southeastern Bengal Basin, Bangladesh; J. Geol. Soc. India 83 447–456.

    Article  Google Scholar 

  • Roser B P, Cooper R A, Nathan S A and Tulloch A J 1996 Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terrains of the West Coast and Nelson, New Zealand; New Zealand J. Geol. Geophys. 39 1–16.

    Article  Google Scholar 

  • Roser B P and Korsch R J 1986 Determination of tectonic setting of sandstone-mudstone suites using \(\text{ SiO }_{2}\) content and \({\rm K}_{2}{\rm O}/{\rm Na}_{2}\)O ratio; J. Geol. 94 635–650.

    Article  Google Scholar 

  • Roser B P and Korsch R J 1988 Provenance signatures of sandstone-mudstone suites determined using discrimination function analysis of major element data; Chem. Geol. 67 119–139.

    Article  Google Scholar 

  • Ryan K M and Williams D M 2007 Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins; Chem. Geol. 242 103–125.

    Article  Google Scholar 

  • Said R 1990 The geology of Egypt; Balkema, Rotterdam, 734p.

    Google Scholar 

  • Sharma A, Sensarma S, Kumar K, Khanna P P and Saini N K 2013 Mineralogy and geochemistry of the Mahi River sediments in tectonically active western India: Implications for Deccan large igneous province source, weathering and mobility of elements in a semi-arid climate; Geochim. Cosmochim. Acta 104 63–83.

    Article  Google Scholar 

  • Tawfik H A, Ghandour I M, Maejima W, Armstrong-Altrin J S and Abdel-Hameed A M T 2015 Petrography and geochemistry of the siliciclastic Araba Formation (Cambrian), east Sinai, Egypt: Implications for provenance, tectonic setting and source weathering; Geol. Mag., doi: 10.1017/S0016756815000771.

  • Taylor S R and McLennan S M 1985 The continental crust: Its composition and evolution; Oxford, UK: Blackwell.

  • Tobia F H and Aswad K J 2015 Petrography and geochemistry of Jurassic sandstones, Western Desert, Iraq: Implications on provenance and tectonic setting; Arab. J. Geosci. 8(5) 2771–2784.

    Article  Google Scholar 

  • Tsuzuki Y and Kawabe I 1983 Polymorphic transformations of kaolin minerals in aqueous solutions; Geochim. Cosmochim. Acta 47 59–66.

  • Vdačný M, Vozarova A and Vozar J 2013 Geochemistry of the Permian sandstones from the Maluz-ina Formation in the Male Karpaty Mts (Hronic Unit, Western Carpathians, Slovakia): Implications for source-area weathering, provenance and tectonic setting; Geol. Carpath. 64 23–38.

  • Verma S P and Armstrong-Altrin J S 2013 New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins;Chem. Geol. 355 117–180.

    Article  Google Scholar 

  • Verma S P and Armstrong-Altrin J S 2016 Geochemical discrimination of siliciclastic sediments from active and passive margin settings; Sedim. Geol. 332 1–12.

    Article  Google Scholar 

  • Verma S P, Diaz-Gonzalez L and Armstrong-Altrin J S 2015 Application of a new computer program for tectonic discrimination of Cambrian to Holocene clastic sediments; Earth Sci. Inf., doi: 10.1007/s12145-015-0244-0.

  • Zaid S M 2002 Geo-environmental study of north Marsa Alam, Red Sea, Egypt; M.Sc. thesis, Zagazig Univ., Egypt, 280p.

  • Zaid S M 2015a Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: Implication for provenance, weathering and tectonic setting; J. Afr. Earth Sci. 102 1–17.

    Article  Google Scholar 

  • Zaid S M 2016 Geochemistry of shales from the Upper Miocene Samh Formation, north Marsa Alam, Red Sea, Egypt: Implications for source area weathering, provenance, and tectonic setting; Arab. J. Geosci. 9 593.

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks members of the laboratory of the National Research Center of Egypt for facilitating analytical work for the present research. Thanks are also due to the journal reviewers, for their very constructive and helpful comments as well as for editorial comments, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir M Zaid.

Additional information

Corresponding editor: Partha Pratim Chakraborty

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaid, S.M. Petrography and geochemistry of the Middle Miocene Gebel El Rusas sandstones, Eastern Desert, Egypt: Implications for provenance and tectonic setting. J Earth Syst Sci 126, 103 (2017). https://doi.org/10.1007/s12040-017-0873-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-017-0873-4

Keywords

Navigation