Skip to main content

Advertisement

Log in

Estimation of earthquake source parameters in the Kachchh seismic zone, Gujarat, India, using three component S-wave spectra

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Earthquake source parameters and crustal \(Q_{0}\) values for the 138 selected local events of (\(\hbox {M}_{\mathrm{w}}{:}2.5{-}4.4\)) the 2001 Bhuj earthquake sequence have been computed through inversion modelling of S-waves from three-component broadband seismometer data. SEISAN software has been used to locate the identified local earthquakes, which were recorded at least three or more stations of the Kachchh seismological network. Three component spectra of S-wave are being inverted by using the Levenberg–Marquardt non-linear inversion technique, wherein the inversion scheme is formulated based on \(\omega ^{2}\) source model. SAC Software (seismic analysis code) is being utilized for calculating three-component displacement and velocity spectra of S-wave. The displacement spectra are used for estimating corner frequency (in Hz) and long period spectral level (in nm-s). These two parameters play a key role in estimating earthquake source parameters. The crustal \({Q}_{0}\) values have been computed simultaneously for each component of three-component broadband seismograph. The estimated seismic moment (\(M_{0}\)) and source radius (r) using S-wave spectra range from 7.03E+12 to 5.36E+15 N-m and 178.56 to 565.21 m, respectively. The corner frequencies for S-wave vary from 3.025 to 7.425 Hz. We also estimated the radiated energy (\(E_{S}\)) using velocity spectra, which is varying from 2.76E+06 to 4.07E+11 Joules. The estimated apparent stress drop and static stress drop values range from 0.01 to 2.56 and 0.53 to 36.79 MPa, respectively. Our study also reveals that estimated \(Q_{0}\) values vary from 119.0 to 7229.5, with an average \(Q_{0}\) value of 701. Another important parameter, by which the earthquake rupture process can be recognized, is Zuniga parameter. It suggests that most of the Kachchh events follow the frictional overshoot model. Our estimated static stress drop values are higher than the apparent stress drop values. And the stress drop values are quite larger for intraplate earthquakes than the interplate earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abercrombie R E 1995 Earthquake source scaling relationship from 1 to 5 ML using seismograms recorded at 2.5 km depth; J. Geophys. Res. 100 24,015–24,036.

    Article  Google Scholar 

  • Abercrombie R E and Rice J R 2005 Small earthquake scaling revisited; can it constrain slip weakening?; Geophys. J. Int. 162 406–424.

    Article  Google Scholar 

  • Aki K 1966 Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. Part 2. Estimation of earthquake moment, released energy, and stress-strain drop from the G wave spectrum; Bulk Earthq. Res. Inst., Tokyo Univ. 44 73–88.

    Google Scholar 

  • Antolik M and Dreger D S 2003 Rupture process of the 26 January 2001 Mw 7.6 Bhuj, India, earthquake from teleseismic broadband data; Bull. Seismol. Soc. Am. 93 1235–1248.

    Article  Google Scholar 

  • Archuleta R J, Cranswick E, Muellar C and Spudich P 1982 Source parameters of the 1980 Mammoth Lakes, California earthquake sequence; J. Geophys. Res. 87 4595–4607.

    Article  Google Scholar 

  • Baumbach M, Grosser H, Schmidt H G, Paulat A, Rietbrock A, Rao C V R K, Soloman Raju P, Sarkar D and Mohan I 1994 Study of the foreshocks and aftershocks of the intraplate Latur earthquake of September 30, 1993, India; Geol. Soc. India Memoir 35 33–63.

    Google Scholar 

  • Biswas K, Kumar M and Mandal P 2016 Lapse time dependent coda-Q (Qc) in the Kachchh, rift zone, Gujarat, India; Nat. Hazards 81 1589–1610, doi: 10.1007/s11069-016-2147-x.

    Article  Google Scholar 

  • Biswas S K 1987 Regional framework, structure and evolution of the western marginal basins of India; Tectonophys. 135 302–327.

    Article  Google Scholar 

  • Bodin P and Horton S 2004 Source parameters and tectonic implications of aftershocks of the \(\text{ M }_\text{ w }~\,7.6\) Bhuj earthquake of 26 January 2001; Bull. Seismol. Soc. Am. 94 818–827.

    Article  Google Scholar 

  • Bodin P, Malagnini L and Akinci A 2004 Ground motion scaling in the Kachchh Basin, India, deduced from aftershocks of the 2001 \(\text{ M }_\text{ w }\) 7.6 Bhuj earthquake; Bull. Seismol. Soc. Am. 94 1658–1669.

    Google Scholar 

  • Brune J N 1970 Tectonic stress and the spectra of seismic shear waves from earthquakes; J. Geophys. Res. 75 4997–5009.

    Article  Google Scholar 

  • Choy G L and Boatwright J L 1995 Global patterns of radiated seismic energy and apparent stress; J. Geophys. Res. 100 18,205–18,228.

    Article  Google Scholar 

  • Chung W Y and Gao H 1995 Source parameters of the Anjar earthquake of July 21, 1956, India, and its seismotectonic implications for the Kutch rift basin; Tectonophys. 242 281–292.

    Article  Google Scholar 

  • Fletcher J B 1995 Source parameters and crustal Q for four earthquakes in south Carolina; Seismol. Res. Lett. 66 44–58.

    Article  Google Scholar 

  • Gupta H K, Harinarayana T, Kousalya M, Mishra D C, Mohan I, Rao P N, Raju P S, Rastogi B K, Reddy P R and Sarkar D 2001 Bhuj earthquake of 26 January 2001; J. Geol. Soc. India 57 275–278.

    Google Scholar 

  • Gupta S C, Kumar A, Shukla A K, Suresh G and Baidya P R 2006 Coda Q in the Kachchh Basin, western India using aftershocks of the Bhuj earthquake of January 26, 2001; Pure Appl. Geophys. 163(8) 1583–1595.

    Article  Google Scholar 

  • Hanks T C and Kanamori H 1979 A moment magnitude scale; J. Geophys. Res. 84(B5) 2348–2350.

    Article  Google Scholar 

  • Havskov J and Ottemoller L 2003 SEISAN: The Earthquake Analysis Software, manual.

  • Ide S and Beroza GC 2001 Does apparent stress vary with earthquake size?; Geophys. Res. Lett. 28 3349–3352.

    Article  Google Scholar 

  • Ide S, Beroza G C, Prejean S G and Ellsworth W L 2003 Apparent break in earthquake scaling due to path and site effects on deep borehole recordings; J. Geophys. Res. 108(B5) 2271, doi: 10.1029/2001JB001617.

    Article  Google Scholar 

  • Johnston A C 1994 Seismotectonic interpretations and conclusions from the stable continental regions; In: The Earthquakes of Stable Continental Regions: Assessment of Large Earthquake Potential, Electric Power and Research Institute, Palo Alto, Report TR 10261.

  • Johnston A C and Schweig E S 1996 The enigma of the New Madrid earthquake of 1811–1812; Ann. Rev. Earth Planet. Sci. 24 339–384.

    Article  Google Scholar 

  • Jost M L, Büßelberg T, Jost O and Harjes H P 1998 Source parameters of injection-induced microearthquakes at 9 km depth at the KTB deep drilling site, Germany; Bull. Seismol. Soc. Am. 88 815–832.

    Google Scholar 

  • Kanamori H K and Anderson D L 1975 Theoretical basis of some empirical relations in seismology; Bull. Seismol. Soc. Am. 65 1073–1095.

    Google Scholar 

  • Kanamori H, Hauksson E, Hutton L K and Jones L M 1993 Determination of earthquake energy release and ML using TERRAscope; Bull. Seismol. Soc. Am. 83 330–346.

    Google Scholar 

  • Keilis-Borok V K 1959 An estimation of the displacement in earthquake source and of source dimensions; Ann. Geofis. 12 205–214.

    Google Scholar 

  • Kumar M, Yallanki V S, Biswas K and Mandal P 2014 Evidence for non-self-similarity in the Mw 7.7 2001 Bhuj earthquake sequence; Nat. Hazards, doi: 10.1007/s11069-014-1381-3.

  • Lee W H K and Valdes C M 1985 HYP071PC: A personal computer version of the HYPO71 earthquake location program; U.S. Geological Survey, pp. 85–749.

  • Madariaga R 1976 Dynamics of an expanding circular fault; Bull. Seismol. Soc. Am. 66 639–666.

    Google Scholar 

  • Mandal P 2007 Sediment thickness and \(Q_{s }\) relations in the Kachchh rift basin, Gujarat, India using Sp converted phases; Pure Appl. Geophys. 164 135–160.

    Google Scholar 

  • Mandal P 2011 Crustal and lithospheric thinning beneath the seismogenic Kachchh rift zone, Gujarat (India): Its implications towards the generation of the 2001 Bhuj earthquake sequence; J. Asian Earth Sci. 40 150–161.

    Article  Google Scholar 

  • Mandal P and Johnston A 2006 Estimation of source parameters for the aftershocks of the 2001 \(\text{ M }_\text{ w }\, 7.7\) Bhuj earthquake, India; Pure Appl. Geophys. 163 1537–1560.

    Article  Google Scholar 

  • Mandal P and Chadha R K 2008 Three-dimensional velocity imaging of the Kachchh seismic zone, Gujarat, India; Tectonophys. 452 1–16.

    Article  Google Scholar 

  • Mandal P and Pandey O P 2011 Seismogenesis of the lower crustal intraplate earthquake occurring in Kachchh, Gujarat, India; J. Asian Earth Sci. 42 479–491.

    Article  Google Scholar 

  • Mandal P, Rastogi B K and Sarma C S P 1998 Source parameters of Koyna earthquakes, India; Bull. Seismol. Soc. Am. 88(3) 833–842.

    Google Scholar 

  • Mandal P, Srivastava J, Joshi S, Kumar S, Bhunia R and Rastogi B K 2004a Low coda-Qc in the epicentral region of the 2001 Bhuj Earthquake of \(\text{ M }_{{\rm w}}~7.7\); Pure Appl. Geophys. 161 1635–1654.

    Google Scholar 

  • Mandal P, Rastogi B K, Satyanarayana H V S, Kousalya M, Vijayraghavan R, Satyamurthy C, Raju I P, Sarma A N S and Kumar N 2004b Characterization of the causative fault system for the 2001 Bhuj earthquake of \(\text{ M }_{{\rm w}} 7.7\); Tectonophys. 378 105–121.

  • Mayeda K, Gök R, Walter W R and Hofstetter A 2005 Evidence for non-constant energy/moment scaling from coda-derived source spectra; Geophys. Res. Lett. 32 L10306, doi: 10.1029/2005GL022405.

    Article  Google Scholar 

  • Mayeda K and Walter W R 1996 Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes; J. Geophys. Res. 101 11,195–11,208.

    Article  Google Scholar 

  • McGarr A 1999 On relating apparent stress to the stress causing earthquake fault slip; J. Geophys. Res. 104 3001–3003.

    Article  Google Scholar 

  • Morasca P, Mayeda K, Malagnini L and Walter W R 2005 Coda derived source spectra, moment magnitudes, and energy-moment scaling in the western Alps; Geophys. J. Int. 160 263–275.

    Article  Google Scholar 

  • Mori J, Abercrombie R E and Kanamori H 2003 Stress drops and radiated energies of aftershocks of the 1994 Northridge, California, earthquake; J. Geophys. Res. 108(B11) 2545, doi: 10.1029/2001JB000474.

  • Negishi H, Mori J, Singh R P and Kumar S 2001 Aftershocks and slip distribution of mainshock: A comprehensive survey of the 26 January 2001 Bhuj earthquake (\(\text{ M }_{{\rm w}}~7.7\)) in the state of Gujarat, India; Research Report on Natural Disaster, pp. 33–35.

  • Orowan E 1960 Mechanism of seismic faulting; Geol. Soc. Am. Memoir 79 323–345.

    Google Scholar 

  • Padhy S 2009 Characteristics of body-wave attenuations in the Bhuj crust; Bull. Seismol. Soc. Am. 99 3300–3313.

  • Pe’rez-Campos X and Beroza G C 2001 An apparent mechanism dependence of radiated seismic energy; J. Geophys. Res. 106 11,127–11,136.

    Article  Google Scholar 

  • Prejean S G and Ellsworth W L 2001 Observations of earthquake source parameters at 2 km depth in the Long Valley Caldera, eastern California; Bull. Seismol. Soc. Am. 91 165–177.

    Article  Google Scholar 

  • Press W H et al. 1992 Numerical recipes in Fortran and C; Academic Press, New York, 382p.

    Google Scholar 

  • Prieto G A, Shearer P M, Vernon F L and Kilb D 2004 Earthquake source scaling and self-similarity estimation from stacking P and S spectra; J. Geophys. Res. 109 B08310, doi: 10.1029/2004JB003084.

    Article  Google Scholar 

  • Rajendran C P and Rajendran K 2001 Character of deformation and past seimicity associated with 1819 Kachchh earthquake, northwestern India; Bull. Seismol. Soc. Am. 91(3) 407–426.

    Article  Google Scholar 

  • Rastogi B K, Gupta H K, Mandal P, Satyanarayana H V S, Kousalya M, Raghavan R, Jain R, Sarma A N S, Kumar N and Satyamurty C 2001 The deadliest stable continental region earthquake occurred near Bhuj on 26 January 2001; J. Seismol. 5 609–615.

    Article  Google Scholar 

  • Reddy P R, Sarkar D, Sain K and Mooney W D 2001 A report on collaborative scientific study at USGS; Menlo Park, USA.

    Google Scholar 

  • Richardson E and Jordan T H 2002 Seismicity in deep gold mines of South Africa: Implications for tectonic earthquakes; Bull. Seismol. Soc. Am. 92 1766–1782.

    Article  Google Scholar 

  • Saha A, Lijesh S and Mandal P 2012 Simultaneous estimation of earthquake source parameters and crustal \(Q\) value from broadband data of selected aftershocks of the 2001 M\(_{\rm w}\) 7.7 Bhuj earthquake; J. Earth Syst. Sci. 121 1421–1440.

    Article  Google Scholar 

  • Savage J C and Wood M W 1971 The relation between apparent stress and stress drop; Bull. Seismol. Soc. Am. 61 1381–1386.

    Google Scholar 

  • Seismic Analysis Code SAC2000 2000 (http://www.iris.edu/manuals/sac/SAC_Home_Main.html), p. 280.

  • Sharma B, Gupta A K, Devi K D, Kumar D, Teotia S S and Rastogi B K 2008 Attenuation of high-frequency seismic waves in Kachchh Region, Gujarat, India; Bull. Seismol. Soc. Am. 98(5) 2325–2340.

    Article  Google Scholar 

  • Singh S K and Ordaz M 1994 Seismic energy release in Mexican subduction zone; Bull. Seismol. Soc. Am. 84(5) 1533–1550.

    Google Scholar 

  • Singh S K, Pacheco J F, Bansal B K, Perez-campos X, Dattatrayam R S and Suresh G 2004 A source study of the Bhuj, India earthquake of 26 January, 2001 (\(\text{ M }_\text{ w } ~7.6\)); Bull. Seismol. Soc. Am. 94(4) 1195–1206.

    Article  Google Scholar 

  • Singh S K, Ordaz M, Dattatrayam R S and Gupta H K 1999 A spectral analysis of the May 21, 1997, Jabalpur, India earthquake (\(M_{w}\) = 5.8) and estimation of ground motion from future earthquakes in the Indian shield region; Bull. Seismol. Soc. Am. 89 1620–1630.

    Google Scholar 

  • Stork A L and Ito H 2004 Source parameter scaling for small earthquakes observed at the western Nagano 800-m deep borehole, central Japan; Bull. Seismol. Soc. Am. 94 1781–1794.

    Article  Google Scholar 

  • USGS 2001 http://earthquake.usgs.gov/earthquakes/eqarchives/year/2001/2001_01_26.php.

  • Zuniga F R 1993 Frictional overshoot and partial stress drop, which one?; Bull. Seismol. Soc. Am. 83 939–944.

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director, NGRI for his support and kind permission to publish this work. This study was supported by Ministry of Earth Sciences, New Delhi and the CSIR-NGRI, Hyderabad (under GAP project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durgada Nagamani.

Additional information

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Corresponding editor: N V Chalapathi Rao

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 57 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagamani, D., Mandal, P. Estimation of earthquake source parameters in the Kachchh seismic zone, Gujarat, India, using three component S-wave spectra. J Earth Syst Sci 126, 74 (2017). https://doi.org/10.1007/s12040-017-0849-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-017-0849-4

Keywords

Navigation