Skip to main content
Log in

Stable carbon and oxygen isotope study on benthic foraminifera: Implication for microhabitat preferences and interspecies correlation

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Stable isotopes of benthic foraminifera have widely been applied in micropalaeontological research to understand vital effects in foraminifera. Isotopic fractionations are mainly controlled by ontogeny, bottom/pore water chemistry, habitat preference, kinetic effect and respiration. Discontinuous abundance of a species for isotopic analysis has forced us to select multiple species from down-core samples. Thus standardisation factors are required to convert isotopic values of one species with respect to other species. The present study is pursued on isotopic values of different pairs of benthic foraminifera from the Krishna–Godavari basin and Peru offshore to understand habitat-wise isotopic variation and estimation of isotopic correction factors for the paired species (Cibicides wuellerstorfi–Bulimina marginata, Ammonia spp.–Loxostomum amygdalaeformis and Bolivina seminuda–Nonionella auris). Infaunal species (B. marginata, Ammonia spp. and N. auris) show a lighter carbon isotopic excursion with respect to the epifaunal to shallow infaunal forms (C. wuellerstorfi, L. amygdalaeformis and B. seminuda). These lighter \(\updelta ^{13}\) \(\hbox {C}\) values are related to utilisation of \(\hbox {CO}_{2}\) produced by anaerobic remineralisation of organic matter. However, enrichment of \(\updelta ^{18}\) \(\hbox {O}\) for the deeper microhabitat (bearing lower pH and decreased \({\hbox {CO}_{3}}^{2-})\) is only recorded in case of B. marginata. It is reverse in case of N. auris and related to utilisation of respiratory \(\hbox {CO}_{2}\) and internal dissolve inorganic carbon pool. Estimation of interspecies isotopic correction factors for the species pairs (\(\updelta ^{13}\) \(\hbox {C}\) of C. wuellerstorfiB. marginata, L. amygdalaeformisAmmonia spp., N. aurisB. seminuda) and \(\updelta ^{18}\) \(\hbox {O}\) of C. wuellerstorfiB. marginata are statistically reliable and may be used in palaeoecological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbieri R and Panieri G 2004 How are benthic foraminiferal faunas influenced by cold seeps? Evidence from the Miocene of Italy; Palaeogeogr. Palaeoclimatol. Palaeoecol. 204 257–275.

    Article  Google Scholar 

  • Basak C, Rathburn A E, Pérez M E, Martin J B, Kluesner J W, Levin L A, Deckker P D, Gieskes J M and Abriani M 2009 Carbon and oxygen isotope geochemistry of live (stained) benthic foraminifera from the Aleutian Margin and the Southern Australian Margin; Mar. Micropaleontol. 70 89–101.

    Article  Google Scholar 

  • Bemis B E, Spero H J, Bijma J and Lea D W 1998 Re-evaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised temperature equations; Paleoceanography 13 150–160.

    Article  Google Scholar 

  • Berger W H, Killingley J S and Vincent E 1978 Stable isotopes in deep sea carbonates: Box core ERDC 92 west equatorial Pacific; Oceanologica Acta 1 203–216.

    Google Scholar 

  • Bernhard J M, Sen Gupta B K and Borne P F 1997 Benthic foraminiferal proxy to estimate dysoxic bottom-water oxygen concentrations: Santa Barbara Basin, U.S. Pacific continental margin; J. Foram. Res. 27 301–310.

    Article  Google Scholar 

  • Bhaumik A K, Gupta A K and Thomas E 2011 Blake outer ridge: Late Neogene variability in paleoceanography and deep-sea biota; Palaeogeogr. Palaeoclimatol. Palaeoecol. 302 435–451.

    Article  Google Scholar 

  • Bhaumik A K, Gupta A K, Clemens S C and Mazumder R 2014 Functional morphology of Melonisbarleeanum and Hoeglundinaelegans: A proxy for water-mass characteristics; Curr. Sci. 106(8) 1133–1140.

    Google Scholar 

  • Brückner S and Mackensen A 2008 Organic matter rain rates, oxygen availability, and vital effects from benthic foraminiferal \(\delta ^{13}\)C in the historic Skagerrak, North Sea; Mar. Micropaleontol. 66 192–207.

    Article  Google Scholar 

  • Collett T, Riedel M, Cochran J, Boswell R, Presley J, Kumar P, Sathe A, Sethi A, Lall M V, Sibal V and NGHP Expedition 01 Scientists 2007 Indian National Gas Hydrate Program Expedition 01 Initial Reports; Directorate General of Hydrocarbons, Ministry of Petroleum and Natural Gas (India), Chapter 10–13, 150p.

  • Cooke S and Rohling E J 2001 Stable Isotopes in Foraminiferal Carbonate; Southampton Oceanography Centre Internal Document 72 1–40.

    Google Scholar 

  • Corliss B H 1985 Microhabitats of benthic foraminifera within deep-sea sediments; Nature 314 435–438.

    Article  Google Scholar 

  • Corliss B H 1991 Morphology and microhabitat preferences of benthic foraminifera from the northwest Atlantic Ocean; Mar. Micropaleontol. 17 195–236.

    Article  Google Scholar 

  • Corliss B H and Emerson S 1990 Distribution of Rose Bengal stained deep-sea foraminifera from the Nova Scotia continental margin and Gulf of Maine; Deep-Sea Res. 37 387–400.

    Article  Google Scholar 

  • De S and Gupta A K 2010 Deep-sea faunal provinces and their inferred environments in the Indian Ocean based on distribution of recent benthic foraminifera; Palaeogeogr. Palaeoclimatol. Palaeoecol. 291 429–442.

    Article  Google Scholar 

  • Debenay J-P, Bénéteau E, Zhang J, Stouff V, Geslin E, Redois F and Fernandez-Gonzalez M 1998 Ammonia beccarii and Ammonia tepida (Foraminifera): Morphofunctional arguments for their distinction; Mar. Micropaleontol. 34 235–244.

    Article  Google Scholar 

  • de Nooijer L J, Toyofuku T and Kitazato H 2009 Foraminifera promote calcification by elevating their intracellular pH; Proc. Nat. Acad. Sci. 106 15,374–15,378.

  • Duijnstee I A P 2001 Experimental ecology of foraminifera towards better quantitative paleoecological reconstructions; PhD Dissertation, Faculty of Earth Sciences, Utrecht University, The Netherlands.

  • Elderfield H, Ferretti P, Greaves M, Crowhurst S, McCave I N, Hodell D and Piotrowski A M 2012 Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition; Science 337 704–709.

    Article  Google Scholar 

  • Emiliani C 1955 Pleistocene temperatures; J. Geol. 63 538–578.

    Article  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam H A and Urey H C 1953 Revised carbonate-water isotopic temperature scale; Geol. Soc. Am. Bull. 64 1315–1325.

    Article  Google Scholar 

  • Fontanier C, Mackensen A, Jorissen F J, Anschutz P, Licari L and Griveaud C 2006 Stable oxygen and carbon isotopes of live benthic foraminifera from the Bay of Biscay: Microhabitat impact and seasonal variability; Mar. Micropaleontol. 58 159–183.

    Article  Google Scholar 

  • Gabel B 1971 Die Foraminiferen der Nordsee. Helgol; Wiss. Meeresunters 22 1–65.

    Article  Google Scholar 

  • GEOSECS 1983 India Ocean Expedition, Hydrographic data, 1977; U.S. Govt. Printing Office, Washington DC, 5, p. 48.

  • Gooday A J, Bernhard J M, Levin L A and Suhr S B 2000 Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen deficient settings: Taxonomic composition, diversity, and relation to metazoan faunas; Deep-Sea Res. II 47 24–54.

  • Graham D W, Corliss B H, Bender M L and Keigwin Jr L D 1981 Carbon and oxygen isotopic disequilibria of recent deep-sea benthic foraminifera; Mar. Micropaleontol. 6 483–497.

    Article  Google Scholar 

  • Grossman E L 1987 Stable isotopes in modern benthic foraminifera: A study of vital effect; J. Foram. Res. 17(1) 48–61.

    Article  Google Scholar 

  • Haug G H and Tiedemann R 1998 Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation; Nature 393 673–676.

    Article  Google Scholar 

  • Hill T M, Kennett J P and Spero H J 2003 Foraminifera as indicators of methane-rich environments: A study of modern methane seeps in Santa Barbara Channel, California; Mar. Micropaleontol. 49 23–138.

    Article  Google Scholar 

  • Hill T M, Kennett J P and Valentine D L 2004 Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific; Geochim. Cosmochim. Acta 68 4619–4627.

    Article  Google Scholar 

  • Hoogakker B, Elderfield H, Oliver K and Crowhurst S 2010 Benthic foraminiferal oxygen isotope offsets over the last glacial-interglacial cycle; Paleoceanogr. 25 PA4229, doi: 10.1029/2009PA001870.

    Article  Google Scholar 

  • Hottinger L 2000 Functional morphology of benthic foraminiferal shells, envelopes of cells beyond measure; Micropaleontol. 46 57–86.

    Google Scholar 

  • Ishimura T, Tsunogai U, Hasegawa S, Nakagawa F, Oi T, Kitazato H, Suga H and Toyofuku T 2012 Variation in stable carbon and oxygen isotopes of individual benthic foraminifera: Tracers for quantifying the magnitude of isotopic disequilibrium; Biogeosci. 9 4353–4367.

    Article  Google Scholar 

  • Jarke J 1961 Die BeziehungenzwischenhydrographischenVerhiiltnissen, Faziesentwicklung und Foraminiferen-verbreitung in der heutigenNordseealsvorbildfilr die Verhiiltnissewiihrend der Miociin-Zeit; Meyniana 10 21–36.

    Google Scholar 

  • Jorissen F J, de Stigter H C and Widmark J G V 1995 A conceptual model explaining benthic foraminiferal microhabitats; Mar. Micropaleontol. 26 3–15.

    Article  Google Scholar 

  • Katz M E, Katz D R, Wright J D, Miller K G, Pak D K, Shackleton N J and Thomas E 2003 Early Cenozoic benthic foraminiferal isotopes: Species reliability and interspecies correction factors; Paleoceanogr. 18(2) 1024, doi: 10.1029/2002PA000798.

    Article  Google Scholar 

  • Lane G A and Doyle M 1956 Fractionation of oxygen isotopes during respiration; Science 123 574.

    Article  Google Scholar 

  • Lobegeier M K and Sen Gupta B K 2008 Foraminifera of hydrocarbon seeps, Gulf of Mexico; J. Foram. Res. 38 93–116.

    Article  Google Scholar 

  • Mackensen A 2008 On the use of benthic foraminiferal \(\delta ^{13}\text{ C }\) in palaeoceanography: Constraints from primary proxy relationships; Geol. Soc. London, Spec. Publ. 303 121–133.

    Article  Google Scholar 

  • Marchitto T M, Curry W B, Lynch-Stieglitz J, Bryan S P, Cobb K M and Lund D C 2014 Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera; Geochim. Cosmochim. Acta 130 1–11.

    Article  Google Scholar 

  • Martin R A, Nesbitt E A and Campbell K A 2007 Carbon stable isotopic composition of benthic foraminifera from Pliocene cold methane seeps, Cascadia accretionary margin; Palaeogeogr. Palaeoclimatol. Palaeoecol. 246 260–277.

    Article  Google Scholar 

  • McConnaughey T 1989 \(^{13}\text{ C }\) and \(^{18}\)O isotopic disequilibrium in biological carbonates. II: In vitro simulation of kinetic isotope effects; Geochim. Cosmochim. Acta 53 163–171.

  • McCrea J M 1950 On the isotope chemistry of carbonates and a paleotemperature scale; J. Chem. Phys. 18 849–857.

    Article  Google Scholar 

  • Moberly R 1968 Composition of magnesium calcites algae and pelecypods by electron microprobe analysis, Sedimentology 11 61–82, doi: 10.1111/j.1365-3091.1968.tb00841.x.

  • Moodley L, Boschker H T S, Middelburg J J, Pel R, Herman P M J, de Deckere E and Heip C H R 2000 Ecological significance of benthic foraminifera: \(^{13}\)C labelling experiments; Mar. Ecol. Progr. Ser. 202 289–295.

    Article  Google Scholar 

  • Mukherjee A, Shankar D, Fernando V, Amol P, Aparna S G, Farnendes R, Michael G S, Khalap S T, Satelkar N P, Agarvadekar Y, Gaonkar M G, Tari A P, Kankonkar A and Vernekar S 2014 Observed seasonal and intraseasonal variability of the East India Coastal Current on the continental slope; J. Earth Syst. Sci. 123(6) 1197–1232.

    Article  Google Scholar 

  • Murray J W 2006 Ecology and application of benthic foraminifera; Cambridge University Press, pp. 220–221.

  • Oberhänsli H, Heinze P, Diester-Haass L and Wefer G 1990 Upwelling off Peru during the last 430,000 yr and its relationship to the bottom-water environment, as deduced from coarse grain-size distributions and analyses of benthic foraminifers at holes 679D, 680B, and 681B, Leg 112, Proc. Ocean Drill. Prog. Scientific Results (eds) Suess E and von Huene R et al, 112 369–390.

  • Rathburn A E, Corliss B H, Tappa K D and Lohmann K C 1996 Comparisons of the ecology and stable isotopic compositions of living (stained) benthic foraminifera from the Sulu and South China Seas; Deep-Sea Res. Part I. Oceanogr. Res. Papers 43(10) 1617–1646.

    Article  Google Scholar 

  • Rathburn A E, Levin L A, Held Z and Lohmann K C 2000 Benthic foraminifera associated with cold methane seeps on the northern California margin: Ecology and stable isotopic composition; Mar. Micropaleontol. 38 247–266.

    Article  Google Scholar 

  • Ravelo A C and Hillaire-Marcel C 2007 The use of oxygen and carbon isotopes of foraminifera in paleoceanography; Dev. Mar. Geol. 1 735–764.

    Article  Google Scholar 

  • Rohling E J, Foster G L, Grant K M, Marino G, Roberts A P, Tamisiea M E and Williams F 2014 Sea-level and deep-sea-temperature variability over the past 5.3 million years; Nature 508 477–482.

    Article  Google Scholar 

  • Ryan T P 1997 Modern Regression Methods; John Wiley and Sons, New York.

    Google Scholar 

  • Saraswati P K, Seto K and Nomura R 2004 Oxygen and carbon isotopic variation in co-existing larger foraminifera from Reef flat at Akajima, Okinawa, Japan; Mar. Micropaleontol. 50 339–349.

    Article  Google Scholar 

  • Schmiedl G and Mackensen A 2006 Multispecies stable isotopes of benthic foraminifers reveal past changes of organic matter decomposition and deepwater oxygenation in the Arabian Sea; Paleoceanogr. 21(4) PA4213.

    Article  Google Scholar 

  • Sen Gupta B K and Machain-Castillo M L 1993 Benthic foraminifera in oxygen-poor habitats; Mar. Micropaleontol. 20 183–201.

    Article  Google Scholar 

  • Shackleton N J 1974 Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial; CNRS, Colloq. Int. 219 203–209.

  • Shackleton N J 1977 The oxygen isotope stratigraphic record of the Late Pleistocene; Phil. Trans. Roy. Soc. London B 280 169–182.

    Article  Google Scholar 

  • Shackleton N J 2000 The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity; Paleoceanogr. 25 PA1211, doi: 10.1029/2009PA001833.

  • Shackleton N J and Opdyke N D 1973 Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 and 106 year scale; Quat. Res. 3 39–55.

    Article  Google Scholar 

  • Shackleton N J, Hall M A and Boersma A 1984 Oxygen and carbon isotope data from Leg 74 foraminifers; DSDP Initial Report 74 599–612.

    Google Scholar 

  • Skinner L C and Shackleton N J 2006 Deconstructing Terminations I and II: Revisiting the glacioeustatic paradigm based on deep-water temperature estimates; Quat. Sci. Rev. 25 3312–3321.

    Article  Google Scholar 

  • Spero H J and Lea D W 1996 Experimental determination of stable isotope variability in Globigerina bulloides: Implications for paleoceanographic reconstructions; Mar. Micropaleontol. 28 231–246.

    Article  Google Scholar 

  • Spero H J, Bijma J, Lea D W and Bemis B E 1997 Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes; Nature 390 497–500.

    Article  Google Scholar 

  • Stefanelli S, Capotondi L and Ciaranfi N 2005 Foraminiferal record and environmental changes during the deposition of the early–middle Pleistocene sapropels in southern Italy; Palaeogeogr. Palaeoclimatol. Palaeoecol. 216 27–52.

    Article  Google Scholar 

  • Suess E, von Huene R and Shipboard Scientific Party et al. 1988 Proceedings of Ocean Drilling Program, Initial Reports, 112: College Station, TX (Ocean Drilling Program), 112 249–303.

  • Tchernia P 1980 Descriptive Regional Oceanography; Pergamon, New York, 253p.

    Google Scholar 

  • Torres M E, Mix A C, Kinports K, Haley B, Klinkhammer G P, McManus J and de Angelis M A 2003 Is methane venting at the seafloor recorded by \(\delta ^{13}\)C of benthic foraminifera shells? Paleoceanogr. 18 1062, doi: 10.1029/2002PA000824.

    Article  Google Scholar 

  • Urey H C 1947 The thermodynamic properties of isotopic substances; J. Chem. Soc. pt. 1 562–581.

    Article  Google Scholar 

  • Wefer G and Berger W H 1991 Isotope paleontology: Growth and composition of extant calcareous species; Mar. Geol. 100 207–248.

    Article  Google Scholar 

  • Wefer G, Heinze P-M and Berger W H 1994 Clues to ancient methane release; Nature 369 282.

    Article  Google Scholar 

  • Woodruff F, Savin S M and Douglas R G 1980 Biological fractionation of oxygen and carbon isotopes by recent benthic foraminifera; Mar. Micropaleontol. 5 3–11.

    Article  Google Scholar 

  • Wyrtki K 1971 Oceanographic Atlas of the International Indian Ocean Expedition; National Science Foundation, Washington, DC, 531p.

  • Zachos Z, Pagani M, Sloan L, Thomas E and Billups K 2001 Trends, rhythms, and aberrations in global climate 65 Ma to Present; Science 292 686–693.

Download references

Acknowledgements

The authors thankfully acknowledge all the reviewers for their scientific suggestions. The research is financially supported by DST Research Project [SR/S4/ES-542/2010(G)] and MoES Research Project [No: MoES/P.O.(Geosci)/24/2014]. AKB is thankful to Prof. A Sarkar, Indian Institute of Technology, Kharagpur and Dr Santosh K Rai, Wadia Institute of Himalayan Geology, Dehradun, for providing the isotope analyses facilities. AKB is also thankful to NGHP and IODP for providing core samples for this study. AKG thanks DST for funding under J.C. Bose fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajoy K Bhaumik.

Additional information

Corresponding editor: N V Chalapathi Rao

Appendix

Appendix

Table 3 Carbon and oxygen isotope dataset with sample depth used in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaumik, A.K., Kumar, S., Ray, S. et al. Stable carbon and oxygen isotope study on benthic foraminifera: Implication for microhabitat preferences and interspecies correlation. J Earth Syst Sci 126, 72 (2017). https://doi.org/10.1007/s12040-017-0840-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-017-0840-0

Keywords

Navigation