Skip to main content
Log in

Geochemistry evidence for depositional settings and provenance of Jurassic argillaceous rocks of Jiyuan Basin, North China

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

This paper aims to discuss the depositional settings and provenances for the Jurassic in Jiyuan basin, North China, based on the rare earth element (REE) and trace element features of 16 Jurassic argillaceous rock samples from the Anyao, Yangshuzhuang and Ma’ao Formations, respectively. Generally, geochemical analysis results show that chondrite-normalised REE distribution patterns of all the three formations are characterised by light-REE (LREE) enrichment, moderately negative Eu anomalies, slightly negative Ce anomalies, and strong fractionation between LREE and heavy-REE (HREE). Trace element proxies V/(V + Ni), Ce anom index, Ce/La, Sr/Ba, and Sr/Cu indicate a weak oxidation–reduction environment, progressively decreasing reducibility and water depth from the bottom up during Jurassic in Jiyuan basin. Palaeoclimate varied from humid in the Early Jurassic to arid in the Middle Jurassic, corresponding with the variations of palaeoredox and palaeosalinity. The provenances of Jurassic rocks in Jiyuan basin are mainly from felsic sources related to active continental margin and continental island arc. The Early–Middle Jurassic (Anyao and Yangshuzhuang Formations) provenances are mainly derived from North Qinling and partially from the eroded recycled felsic sedimentary covers of Taihang Mountain. In the late stage of Middle Jurassic (Ma’ao Formation), Taihang Mountain has been the primary source to Jiyuan basin. We conclude that the Jurassic rocks of Jiyuan basin reveal the progressive uplift and denudation processes of the Taihang Mountain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adegoke A K, Wan H A, Hakimi M H, Yandoka B M S, Mustapha K A and Aturamu A O 2014 Trace elements geochemistry of kerogen in upper cretaceous sediments, Chad (Bornu) Basin, northeastern Nigeria: Origin and paleo-redox conditions; J. African Earth Sci. 100 675–683.

    Article  Google Scholar 

  • Algeo T J and Maynard J B 2004 Trace-element behaviour and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems; Chem. Geol. 206 (3) 289–318.

    Article  Google Scholar 

  • Allègre C J and Minster J F 1978 Quantitative models of trace element behaviour in magmatic processes; Earth Planet. Sci. Lett. 38 1–25.

    Article  Google Scholar 

  • Bao H Y, Yang F L, Wang D P, Yu H X and Wu Z 2011 Geochemical characteristics of sedimentary rock in Southern Jiangsu Province on Mesozoic and Palaeozoic: A perspective from the Shengke-1 Well; J. Jilin Univ. (Earth Sci. Ed.) 41 (1) 29–37. (in Chinese with English Abstract).

    Google Scholar 

  • Bhatia M R 1983 Plate tectonics and geochemical composition of sandstones; J. Geol. 91 611–627.

    Article  Google Scholar 

  • Bhatia M R and Crook K A W 1986 Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins; Contrib. Mineral. Petrol. 92 (2) 181–193.

    Article  Google Scholar 

  • Bhatia M R and Taylor S R 1981 Trace element geochemistry and sedimentary provinces: A study from the Tasman Geosyncline, Australia; Chem. Geol. 33 (1–2) 115–125.

    Article  Google Scholar 

  • Boynton W V 1984 Cosmochemistry of the rare earth elements: Meteorite studies; Research 2 63–114.

    Google Scholar 

  • Buatois L A, Mangano M G, Wu X T and Zhang G C 1996 Trace fossils from Jurassic Lacustrine turbidites of the Anyao Formation (central China) and their environmental and evolutionary significance; Ichnos. 4 (4) 287–303.

    Article  Google Scholar 

  • Calvert S E and Pedersen T F 1993 Geochemistry of recent oxic and anoxic sediments: Implications for the geological record; Mar. Geol. 113 (1) 67–88.

    Article  Google Scholar 

  • Cheng Y H, Yu X H, Han B Q, Du H F and Bai Z H 2010 Geochemical characteristics of the 3rd member of Palaeogene Shahejie Formation in Dongpu Depression and their geological implications; Geology in China 37 357–366. (in Chinese with English abstract).

    Google Scholar 

  • Condie K C 1993 Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales; Chem. Geol. 104 (1) 1–37.

    Article  Google Scholar 

  • Crusius J, Calvert S, Pedersen T and Sage D 1996 Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition; Earth Planet. Sci. Lett. 145 (1) 65–78.

    Article  Google Scholar 

  • Cullers R L 1994 The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the Wet Mountains region, USA; Chem. Geol. 113 327–343.

    Article  Google Scholar 

  • Cullers R L 2000 The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies; Lithos 51 (3) 181–203.

    Article  Google Scholar 

  • Custodio E 2002 Aquifer overexploitation: What does it mean?; Hydrogeol. J. 10 (2) 254–277.

    Article  Google Scholar 

  • Davis G A, Darby B J, Zheng Y and Spell T L 2002 Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China; Geology 30 (11) 1003–1006.

    Article  Google Scholar 

  • Dean W E, Gardner J V and Piper D Z 1997 Inorganic geochemical indicators of glacial–interglacial changes in productivity and anoxia on the California continental margin; Geochim. Cosmochim. Acta 61 (61) 4507–4518.

    Article  Google Scholar 

  • Deng H W and Qian K 1993 Sedimentary Geochemistry and Environment Analysis, Lanzhou; Gansu Science and Technology Press,. pp. 95–104 (in Chinese).

  • Dong S W, Wu X H, Wu Z H, Deng J F, Gao R and Wang C S 2000 On tectonic seesawing of the East Asia continent–Global implication of the Yanshanian movement; Geol. Rev. 46 (1) 8–13. (in Chinese with English abstract).

    Google Scholar 

  • Dong X W, Zhang Y Q, Long C X, Yang Z Y, Ji Q, Wang T, Hu J M and Chen X H 2007 Jurassic tectonic revolution in China and new interpretation of the Yanshan Movement; Acta Geol. Sin. 81 (11) 1449–1461.

    Google Scholar 

  • Elderfield H and Greaves M J 1982 The rare earth elements in seawater; Nature 296 (5854) 214–219.

    Article  Google Scholar 

  • Floyd P A and Leveridge B E 1987 Tectonic environment of the Devonian Gramscatho basin, South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones; J. Geol. Soc. 144 (4) 531–542.

    Article  Google Scholar 

  • Griffin W L, Zhang A, O’Reilly S Y and Ryan C G 1998 Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton, In: Mantle dynamics and plate interaction in East Asia (eds) Flower M F J, Chung S L, Lo C H and Lee T Y; Geodyn. Ser. 27 107–126.

  • Gu X X, Liu J M, Zheng M H and Qi L 2002 Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China geochemical evidence; J. Sedim. Res. 72 (3) 393–407.

    Article  Google Scholar 

  • Haskin L A, Haskin M A, Fery F A and Wildeman T R 1968 Relative and absolute terrestrial abundances of the rare earths; Origin and Distribution of the Elements, pp. 1889–911.

  • Hatch J R and Leventhal J S 1992 Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA; Chem. Geol. 99 (1) 65–82.

    Article  Google Scholar 

  • Hou G T, Yang M H and Yao W H 2009 The destruction of the North China craton: Evidences from the extensions; J. Virtual Explorer 29 10–17.

    Google Scholar 

  • Hu B 1991 The Late Triassic and Middle Jurassic continental strata in Jiyuan, Henan; J. Stratigraphy 15 (1) 48–52. (in Chinese with English Abstract).

    Google Scholar 

  • Hu B, Qi Y A, Zhang G C and Jiang Z X 2002 The Ichnocoenoses of Mesozoic–Cenozoic terrestrial deposits of China; Acta Sedim. Sin. 20 (4) 574–581. (in Chinese with English Abstract).

    Google Scholar 

  • Hu B, Zhang G C, Guo W X, Qi Y A and Zhang L W 2004a The Stipsellus ichnofabric in the fluvial deposits of Upper Triassic Tanzhuang Formation in Jiyuan, western Henan; Coal Geol. Explor. 32 (3) 1–4. (in Chinese with English Abstract).

    Google Scholar 

  • Hu B, Zhang L W, Qi Y A and Guo W X 2004b Sedimentary structures and environments of Lower Jurassic Anyao Formation, Jiyan, Central China; J. Jiaozuo Instit. Technol. (Natural Science) 23 (1) 18–22. (in Chinese with English Abstract).

    Google Scholar 

  • Huang J H, Huang F, Evans L and Glasauer S 2015 Vanadium: Global (bio)geochemistry; Chem. Geol. 417 68–89.

    Article  Google Scholar 

  • Isozaki Y 1997 Jurassic accretion tectonics of Japan; The Island Arc 6 (1) 25–51.

    Article  Google Scholar 

  • Isozaki Y and Nishimura Y 1989 Fusaki Formation, Jurassic subduction–accretion complex on Ishigaki island, southern Ryukyus and its geologic implication to late Mesozoic convergent margin of east Asia; Geol. Soc. Japan Memoir 33 259–275.

    Google Scholar 

  • Jones B and Manning D A C 1994 Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstone; Chem. Geol. 111 (1) 111–129.

    Article  Google Scholar 

  • Lerman A 1978 Lakes: Chemistry, Geology, Physics; Springer-Verlag, Berlin Heidelberg, 368p.

    Book  Google Scholar 

  • Li S Z, Zhao G C, Dai L M, Liu X, Zhou L H, Santosh M and Suo Y H 2012 Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton; J. Asian Earth Sci. 47 (1) 64–79.

    Article  Google Scholar 

  • Li Z H, Dong S W and Qu H J 2014 Sedimentary evidences of Jurassic Orogenic Process and key time limit on the northern margin of North China Craton; J. Jilin Univ.: Earth Sci. Ed. 44 (5) 1553–1574. (in Chinese with English Abstract).

    Google Scholar 

  • Liu G and Zhou D S 2007 Application of microelements analysis in identifying sedimentary environment –Taking Qianjiang Formation in the Jianghan Basin as an example; Petrol. Geol. Exp. 29 (3) 307–310. (in Chinese with English Abstract).

    Google Scholar 

  • Liu S F, San S and Zhang G W 2013 Early Mesozoic basin development in North China: Indications of cratonic deformation; J. Asian Earth Sci. 62 221–236.

    Article  Google Scholar 

  • Luo Z H, Wei Y, Xin H T, Ke S, Li W T, Li D D and Huang J X 2006 The Mesozoic intraplate orogeny of the Taihang Mountains and the thinning of the continental lithosphere in North China; Earth Sci. Front. 13 (6) 52–63. (in Chinese with English Abstract).

    Google Scholar 

  • Maruyama S, Isozaki Y, Kimura G and Terabayashi M 1997 Paleogeographic maps of the Japanese islands: Plate tectonic synthesis from 750 Ma to the present; The Island Arc 6 121–142.

    Article  Google Scholar 

  • McLennan S M 1989 Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes; Rev. Mineral. Geochem. 21 (1) 169–200.

    Google Scholar 

  • McLennan S M and Taylor S R 1991 Sedimentary rocks and crustal evolution: Tectonic setting and secular trends ; J. Geol. 99 (1) 1–21.

    Article  Google Scholar 

  • McLennan S M, Hemming S R, McDaniel D K and Hanson G N 1993 Geochemical approaches to sedimentation, provenance, and tectonic; GSA Spec. Publ. 284 21–40.

    Google Scholar 

  • McLennan S M, Hemming S R, Taylor S R and Erikkson K A 1995 Early Proterozoic crustal evolution: Geochemical and Nd–Pb isotopic evidence from metasedimentary rocks, southwestern North America; Geochim. Cosmochim. Acta 59 (6) 1153–1177.

    Article  Google Scholar 

  • Miao J Y, Zhao J S, Liu C Y, Zhu Y J and Wang W L 2007 Relationship between the geochemical characteristics and sedimentary environment of Permian hydrocarbon source rocks in the Orods basin; Geol. China 34 (3) 430–435. (in Chinese with English abstract).

    Google Scholar 

  • Mondal M E A, Wani H and Mondal B 2012 Geochemical signature of provenance, tectonics and chemical weathering in the quaternary flood plain sediments of the Hindon river, Gangetic plain, India; Tectonophys. 566–567 (3) 87–94.

    Article  Google Scholar 

  • Qi L, Jing H and Gregoire D C 2000 Determination of trace elements in granites by inductively coupled plasma mass spectrometry; Talanta 51 (3) 507–513.

    Article  Google Scholar 

  • Rudnick R L and Gao S 2014 Composition of the continental crust; Treatise on geochemistry (Second Edition), pp. 41–51.

  • Rimmer S M 2004 Geochemical palaeoredox indicators in Devonian–Mississippian black shales, central Appalachian basin (USA); Chem. Geol. 206 (3–4) 373–391.

    Article  Google Scholar 

  • Taylor S R and McLennan S M 1985 The continental crust: Its composition and evolution; J. Geol. 94 (4) 312p.

    Google Scholar 

  • Tribovillard N, Algeo T J, Lyons T and Riboulleau A 2006 Trace metals as paleoredox and paleoproductivity proxies: An update; Chem. Geol. 232 (1–2) 12–32.

    Article  Google Scholar 

  • Wang Y and Li H M 2008 Initial formation and Mesozoic tectonic exhumation of an intracontinental tectonic belt of the northern part of the Taihang Mountain Belt, Eastern Asia; J. Geol. 116 (2) 155–172.

    Article  Google Scholar 

  • Wani H and Mondal M E A 2011 Evaluation of provenance, tectonic setting, and paleoredox conditions of the Mesoproterozoic–Neoproterozoic basins of the Bastar craton, Central Indian Shield: Using petrography of sandstones and geochemistry of shales; Lithosphere 3 (2) 143–154.

    Article  Google Scholar 

  • Wang W, Zhou M F, Yan D P and Li J W 2012 Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China; Precamb. Res. 192–195 (1) 107–124.

    Article  Google Scholar 

  • Wu X T 1985 Trace fossils and their environmental significance in non-marine turbidite deposits from Jiuyan-Yima basin, Western Henan; Acta Sedim. Sin 3 (3) 23–31, 137–138. (in Chinese with English Abstract).

    Google Scholar 

  • Wu Z P, Ma Z P and Zhou Y Q 2000 Geochemical characters of sedimentary system in the Triassic–Jurassic boundary section of Jiyuan basin; J. Univ. Petrol. China 26 (3) 20–25. (in Chinese with English Abstract).

    Google Scholar 

  • Wu F Y, Lin J Q, Wilde S A, Zhang X O and Yang J H 2005a Nature and significance of the Early Cretaceous giant igneous event in Eastern China; Earth Planet. Sci. Lett. 233 (1) 103–119.

    Article  Google Scholar 

  • Wu F Y, Yang J H, Wilde S A and Zhang X O 2005b Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong peninsula, NE China; Chem. Geol. 221 (1–2) 127–156.

    Article  Google Scholar 

  • Xu Y J, Du Y S, Yang J H and Huang H 2010 Sedimentary geochemistry and provenance of the lower and middle Devonian Laojunshan Formation, the north Qilian orogenic belt; Sci. China Earth Sci. 53 (3) 356–367.

    Article  Google Scholar 

  • Yan D T, Chen D Z, Wang Q C and Wang J G 2009 Geochemical changes across the Ordovician–Silurian transition on the Yangtze Platform, South China; Sci. China 52 (1) 38–54. (in Chinese with English Abstract).

    Article  Google Scholar 

  • Yang W T, Yang J H, Wang X F and Du Y S 2012 Geochronology from Middle Triassic to Middle Jurassic Detrital Zircons in Jiyuan Basin and its implications for the Qinling Orogen; Earth Sci. – J. China Univ. Geosci. 37 (3) 489–500. (in Chinese with English Abstract).

    Google Scholar 

  • Yang W T, Wang M and Du Y S 2014a The depositional characteristics from Mesozoic Jiyuan Basin with its response to the uplift of Qinling Qrogen and Taihang Mountains; Geol. Rev. 60 (2) 206–274.

    Google Scholar 

  • Yang W T, Yang J H, Wang X F and Du Y S 2014b Uplift-denudation history of the Qinling orogen: Constrained from the detrital-zircon U–Pb geochronology; J. Asian Earth Sci. 89 (3) 54–65.

    Article  Google Scholar 

  • Zhai M G and Liu W J 2003 Palaeoproterozoic tectonic history of the North China craton: A review; Precamb. Res. 122 (1–4) 183–199.

    Article  Google Scholar 

  • Zhai M G and Santosh M 2011 The early Precambrian odyssey of the north China Craton: A synoptic overview; Gondwana Res. 20 (1) 6–25.

    Article  Google Scholar 

  • Zhang K J 1997 The north and south China collision along the eastern and southern North China margins; Tectonophys. 270 (12) 145–156.

    Article  Google Scholar 

  • Zhang K J 2002 Escape hypothesis for north and south China collision and tectonic evolution of the Qinling Orogen, eastern Asia; Eclogae Geol. Helv. 95 (2) 237–247.

    Google Scholar 

  • Zhang K J 2004 Secular geochemical variations of the Lower Cretaceous siliciclastic rocks from central Tibet (China) indicate a tectonic transition from continental collision to back-arc rifting; Earth Planet. Sci. Lett. 229 (1) 73–89.

    Article  Google Scholar 

  • Zhang M and Liu Z 2015 Geochemistry of pelitic rocks from the Middle Permian Lucaogou Formation, Sangonghe area, Junggar basin, Northwest China: Implications for source weathering, recycling, provenance and tectonic setting; Geol. J. 50 (8) 552–552.

    Article  Google Scholar 

  • Zhang G C, Zeng Y F, Buatois L A and Mangano M G 2005 Lacustrine deposits and associated trace fossils in the Upper Part of the Tanzhuang Formation (T2–3), Jiyuan Basin, Henan Province; Acta Sedim. Sin. 23 (1) 100–107. (in Chinese with English Abstract).

    Google Scholar 

  • Zhang Y Q, Dong S W, Zhao Y and Zhang T 2008 Jurassic tectonics of North China: A synthetic view; Acta Geol. Sin. 82 (2) 310–326.

    Google Scholar 

  • Zhang K J, Li B and Wei Q G 2012 Geochemistry and Nd isotopes of the Songpan-Ganzi Triassic turbidites, central China: Diversified provenances and tectonic implications; J. Geol. 120 (1) 69–82.

    Article  Google Scholar 

  • Zhao G C and Cawood P A 2012 Precambrian geology of China; Precamb. Res. 222 13–54.

    Article  Google Scholar 

  • Zhao G C and Zhai M G 2012 Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications; Gondwana Res. 23 (4) 1207–1240.

    Article  Google Scholar 

  • Zhao G C, Wilde S A, Cawood P A and Sun M 2001 Archaean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P–T path constraints and tectonic evolution; Precamb. Res. 107 45–73.

    Article  Google Scholar 

  • Zhao G C, Sun M, Wilde S A and Li S Z 2005 Late Archean to Paleoproterozoic evolution of North China Craton: Key issues revisited; Precamb. Res. 136 177–202.

    Article  Google Scholar 

  • Zheng R C and Liu M Q 1999 Study on palaeosalinity of Chang-6 oil reservoir set in Ordos Basin; Oil Gas Geol. 20 (1) 20–25. (in Chinese with English Abstract).

    Google Scholar 

  • Zhu R X, Yang J H and Wu F Y 2012 Timing of destruction of the North China Craton; Lithos. 149 (4) 51–60.

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the reviewer and editor of the Journal of Earth System Science who offered helpful and insightful comments. We would like to thank Dr Wentao Yang and Pengfei Zuo for their thoughtful advices on improving this manuscript. Thanks are also given to Lu Zhou, Yong Cheng, Pengxiao Wang and Fengbo Sun for their help in the fieldwork. This work was supported by the Chinese NSFC grant #41272118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DESHUN ZHENG.

Additional information

Corresponding editor: N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MENG, Y., ZHENG, D. & LI, M. Geochemistry evidence for depositional settings and provenance of Jurassic argillaceous rocks of Jiyuan Basin, North China. J Earth Syst Sci 126, 14 (2017). https://doi.org/10.1007/s12040-016-0782-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-016-0782-y

Keywords

Navigation