Skip to main content
Log in

Gravitational attraction of a vertical pyramid model of flat top-and-bottom with depth-wise parabolic density variation

Journal of Earth System Science Aims and scope Submit manuscript

Abstract

In 3D gravity modelling, right rectangular vertical prism model with linear and nonlinear density and polyhedral bodies with linear density variation exist in geophysical literature. Here, we propose a vertical pyramid model with depth-wise parabolic density contrast variation. Initially, we validate our analytic expression against the gravity effect of a right rectangular parallelepiped of constant density contrast. We provide two synthetic examples and a case study for illustrating the effectiveness of our pyramid model in gravity modelling. The included case study of Los Angeles basin, California demonstrates the comparative advantages of our pyramid model over a conventional right rectangular vertical prism model. Our pyramid model could be quite effective as a building block for evaluating the gravity effect of an arbitrarily-shaped 3D or 2.5-D source(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  • Banerjee B and Das Gupta S P 1977 Short note: Gravitational attraction of a rectangular parallelepiped; Geophysics 42 1053–1055.

  • Chai Y and Hinze W J 1988 Gravity inversion of an interface above which the density contrast varies exponentially with depth; Geophysics 53 837–845.

  • Chakravarthi V, Raghuram H M and Singh S B 2002 Short note: 3D forward modelling of basement interfaces above which the density contrast varies continuously with depth; Comput. Geosci. 28 53–57.

  • D’Urso M G 2013 On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities; J. Geodesy 87 239–252.

  • D’Urso M G 2014a Analytical computation of gravity effects for polyhedral bodies; J. Geodesy 88 13–29, doi: 10.1007/s00190-013-0664-x.

  • D’Urso M G 2014b Gravity effects of polyhedral bodies with linearly varying density; Cel. Mech. Dyn. Astron. 120 349–372, doi: 10.1007/s10569-014-9578-z.

  • D’Urso M G 2015 The gravity anomaly of a 2D polygonal body having density contrast given by polynomial functions; Surv. Geophys. 36 391–425.

  • García-Abdeslem J 1992 Gravitational attraction of a rectangular prism with depth dependent density; Geophysics 57 470–473.

  • García-Abdeslem J 2005 Gravitational attraction of a rectangular prism with density varying with depth following a cubic polynomial; Geophysics 70 J39–J42, doi: 10.1190/1.2122413.

  • Hamayun, Prutkin I and Tenzer 2009 The optimum expression for the gravitational potential of polyhedral bodies having a linearly varying density distribution; J. Geodesy 83 1163–1170, doi: 10.1007/s00190-009-0334-1.

  • Hansen R O 1999 Short note: An analytical expression for the gravity field of a polyhedral body with linearly varying density; Geophysics 64 75–77.

  • Holstein H 2002 Gravimagnetic similarity in anomaly formulas for uniform polyhedral; Geophysics 67 1126–1133.

  • Holstein H 2003 Gravimagnetic anomaly formulas for polyhedral of spatially linear media; Geophysics 68 157–167, doi: 10.1190/1.1543203.

  • Holstein H, Fitzgerald D J and Stefanov H 2013 Gravimagnetic similarity for homogeneous rectangular prisms; 75th EAGE Conference & Exhibition London, UK, 10–13, doi: 10.3997/2214-4609.20130590.

  • Kwok Y K 1991 Singularities in gravity computation for vertical cylinders and prisms; Geophys. J. Int. 104 1–10.

  • Martins C M, Barbosa V C F and Silva J B C 2010 Simultaneous 3D depth-to-basement and density-contrast estimates using gravity data and depth control at few points; Geophysics 75 I21–I28, doi: 10.1190/1.3380225.

  • Nagy D 1966 The gravitational attraction of a right rectangular prism; Geophysics XXX 362–371.

  • Okabe M 1979 Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translation into magnetic anomalies; Geophysics 44 730–741.

  • Oliveira V C J and Barbosa V C F 2013 3-D radial gravity gradient inversion; Geophys. J. Int. 195 (2) 883–902, doi: 10.1093/gji/ggt307.

  • Petrović S 1996 Determination of the potential of homogeneous polyhedral bodies using line integrals; J. Geodesy 71 44–52.

  • Pohanka V 1988 Optimum expression for computation of the gravity field of a homogeneous polyhedral body; Geophys. Prospect. 36 733–751.

  • Pohanka V 1998 Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density; Geophys. Prospect. 46 391–404.

  • Rao C V, Chakravarthi V and Raju M L 1993 Parabolic density function in sedimentary basin modelling; Pure Appl. Geophys. 140 493–501.

  • Rao C V, Raju M L and Chakravarthi V 1995 Gravity modelling of an interface above which the density contrast decreases hyperbolically with depth; Appl. Geophys. 34 63–67.

  • Starostenko V I 1978 Inhomogeneous four-cornered vertical pyramid with flat top and bottom surface, in stable computational method in gravimetric problems (Navukova Dumka, Kiev, Russia), pp. 90–95 (in Russian).

  • Talwani M and Ewing M 1960 Rapid computation of gravitational attraction of three-dimensional bodies of arbitrary shape; Geophysics XXV 203–225.

  • Tsoulis D 2000 A note on the gravitational field of the right rectangular prism; Boll. Geod. Sc. Aff. LIX 1 21–35.

  • Tsoulis D and Petrović S 2001 On the singularities of the gravity field of a homogenous polyhedral body; Geophysics 66 535–539.

Download references

Acknowledgements

The integral evaluations in our formulation of gravity forward problem are undertaken by Wolfram Mathematica 9.0.1. Drafting of illustrations in our paper are implemented through MATLAB 2013b. Mr. Anand P Gokula is thankful to Ministry of Human Resources Development (MHRD), Government of India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RAMBHATLA G SASTRY.

Appendix

Appendix

1.1 Expression of the gravity anomaly for pyramid model

From equations (3 and 4), we can rewrite the parabolic density function \({\Delta } \rho (\zeta ^{\prime })\) and the limits \(\xi ^{\prime }\) and \(\eta ^{\prime }\) of equation (3) as:

$$ \left. {\begin{array}{l} {\Delta} \rho \left( {\zeta^{\prime}} \right)={\Delta {\rho_{0}^{3}}} / {\left[ {r-\alpha \zeta^{\prime}} \right]^{2}}, \\ r={\Delta} \rho_{0} -\alpha \left( {z-h_{1}} \right), \\ \xi^{\prime}=\xi_{l}^{\prime} -x=m_{1} \zeta^{\prime}+c_{1} , \\ \xi^{\prime}=\xi_{u}^{\prime} -x=m_{2} \zeta^{\prime}+c_{2} , \\ \eta^{\prime}=\eta_{l}^{\prime} -y=m_{3} \zeta^{\prime}+c_{3} , \\ \eta^{\prime}=\eta_{u}^{\prime} -y=m_{4} \zeta^{\prime}+c_{4} , \end{array}} \right\} $$
(A1)

where

$$ \left. {\begin{array}{l} m_{1} ={\left( {\xi_{3} -\xi_{1}} \right)} / {\left( {h_{2} -h_{1}} \right)}, \\[-.5pt] m_{2} ={\left( {\xi_{4} -\xi_{2}} \right)} / {\left( {h_{2} -h_{1}} \right)}, \\[-.5pt] m_{3} ={\left( {\eta_{3} -\eta_{1}} \right)} / {\left( {h_{2} -h_{1}} \right)}, \\ m_{4} ={\left( {\eta_{4} -\eta_{2}} \right)} / {\left( {h_{2} -h_{1}} \right)}, \\[-.5pt] c_{1} ={\left( {h_{1} -z} \right)\left( {\xi_{1} -\xi_{3}} \right)} / {\left( {h_{2} -h_{1}} \right)}+\xi_{1} -x, \\[-.5pt] c_{2} ={\left( {h_{1} -z} \right)\left( {\xi_{2} -\xi_{4}} \right)} / {\left( {h_{2} -h_{1}} \right)}+\xi_{2} -x, \\[-.5pt] c_{3} ={\left( {h_{1} -z} \right)\left( {\eta_{1} -\eta_{3}} \right)} / {(h_{2} -h_{1} )}+\eta_{1} -y, {\begin{array}{*{20}c} \end{array}} \\ c_{4} ={\left( {h_{1} -z} \right)\left( {\eta_{2} -\eta_{4}} \right)} / {\left( {h_{2} -h_{1}} \right)}+\eta_{2} -y. \end{array}} \right\} $$
(A2)

Then, by performing integration with respect to \(\xi ^{\prime }\) and \(\eta ^{\prime }\) in equation (3), we get:

$$\begin{array}{@{}rcl@{}} &&g_{\text{pyramid}} \left( {x,y,z} \right)=\gamma {\Delta} {\rho_{0}^{3}}\int\limits_{\zeta^{\prime}=h_{1} -z}^{h_{2} -z} 1 / \left[ {r-\alpha \zeta^{\prime}} \right]^{2}\\[-2pt] &&\times\left\{{\vphantom{\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right)}} \tan^{-1}\left[{\vphantom{\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right)}} {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)\left( {m_{4} \zeta^{\prime}+c_{4}} \right)}\right.\right.\\[-2pt] && \left/\left. \!\!\!\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right) \right] \right. \\[-2pt] \end{array} $$
$$\begin{array}{@{}rcl@{}} &&-\tan^{-1}\left[{\vphantom{\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right)}} {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)\left( {m_{3} \zeta^{\prime}+c_{3}} \right)} \right.\\&& \left/\!\!\!\left.{\left( {\zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{3} \zeta^{\prime}+c_{3}} \right)^{2}+\zeta^{\prime2}}} \right)} \right]\right. \\ &&-\tan^{-1}\left[{\vphantom{\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right)}} {\left( {m_{1} \zeta^{\prime}+c_{1}} \right)\left( {m_{4} \zeta^{\prime}+c_{4}} \right)} \right.\\ &&\left/ \!\!\!\left.\left( {\zeta^{\prime}\sqrt {\left( {m_{1} \zeta^{\prime}+c_{1}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}}\right)^{2}+\zeta^{\prime2}}} \right) \right]\right. \\ &&+\tan^{-1}\left[{\vphantom{\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right)}} \left( {m_{1} \zeta^{\prime}+c_{1}} \right)\left( {m_{3} \zeta^{\prime}+c_{3}} \right) \right.\\[-2pt] &&\left/\!\!\!\left.\left. \left( {\zeta^{\prime}\sqrt {\left( {m_{1} \zeta^{\prime}\,+\,c_{1}} \right)^{2}\,+\,\left( {m_{3} \zeta^{\prime}\,+\,c_{3}} \right)^{2}\,+\,\zeta^{\prime2}}} \right) \right] \right\}\! d\zeta^{\prime}.\right.\\ \end{array} $$
(A3)

As the integration of terms on RHS of equation (A3) is an involved job, we undertake the integration task in a systematic manner. Wolfram Mathematica 9.0.1 is used for carrying out integration. A cursory look at equation (A3) reveals that RHS have four terms. Here, we include the result of integration for the first terms of the RHS part of equation (A3).

$$\begin{array}{@{}rcl@{}} && g_{1} \left( {x,y,z} \right)=\int\limits_{h_{1} -z}^{h_{2} -z} {1 / {\left[ {r-\alpha \zeta^{\prime}} \right]}^{2}} \\ &&\times\left\{{\vphantom{\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right)}}\tan^{-1}\left[{\vphantom{\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right)}}\left( {m_{2} \zeta^{\prime}+c_{2}} \right)\left( {m_{4} \zeta^{\prime}+c_{4}} \right) \right.\right.\\ &&\left/\!\!\!\left. \left. \left( {\zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}\,+\,c_{2}} \right)^{2}\,+\,\left( {m_{4} \zeta^{\prime}\,+\,c_{4}} \right)^{2}\,+\,\zeta^{\prime2}}} \right) \right] \right\} d\zeta^{\prime}\right.. \end{array} $$

Upon integration with respect to ζ, we get:

$$\begin{array}{@{}rcl@{}} && g_{1} \left( {x,y,z} \right)\,=\,-\!\tan^{-1}\!{\left[ {{\left( {M_{1} \zeta^{\prime2}\,+\,M_{2} \zeta^{\prime}\,+\,M_{3}} \right)} \!/\! {\left( {\zeta^{\prime}R^{\prime}} \right)}} \right]} \\ &&/ {\left[ {\alpha \left( {-r+\alpha \zeta^{\prime}} \right)} \right]} \\ && {-V_{5} {\log \left( {-r+\alpha \zeta^{\prime}} \right)} / {\left( {2\sqrt {\alpha^{2}k_{1} \,+\,\alpha b_{1} r+a_{1} r^{2}} V_{6}} \right)}} \\ && +V_{5} \log \left( {\vphantom{\left.+2\sqrt {\alpha^{2}k_{1} +\alpha b_{1} r+a_{1} r^{2}} R^{\prime} \right) /}}{2\alpha k_{1}} +b_{1} r+\alpha b_{1} \zeta^{\prime}+2a_{1} r\zeta^{\prime}\right.\\ &&\left.+2\sqrt {\alpha^{2}k_{1} +\alpha b_{1} r+a_{1} r^{2}} R^{\prime} \right) \\ &&\left/\!\!\left( {2\sqrt {\alpha^{2}k_{1} +\alpha b_{1} r+a_{1} r^{2}} V_{6}} \right)\right.\\ &&+{V_{z1}} / {\left( {2\alpha V_{6}} \right)} {\overset{h_{2} -z}\vert}\underset{h_{1} -z}, \end{array} $$
(A4)

where

$$\begin{array}{@{}rcl@{}} V_{z1}\!\!\!\! &=&\!\!\!\!\left[ {V_{1} \!\left( {4\alpha^{3}k_{1} M_{2} {M_{3}^{2}} -3\alpha^{3}b_{1} {M_{3}^{3}} +2\alpha^{2}{k_{1}^{2}} M_{3} r} \right.} \right. \\ &&\!\!\!\!+2\alpha^{2}k_{1} {M_{2}^{2}} M_{3} r\,+\,6\alpha^{2}k_{1} M_{1} {M_{3}^{2}} r\,-\,\alpha^{2}b_{1} M_{2} {M_{3}^{2}} r\\&&\!\!\!\!-4\alpha^{2}a_{1} {M_{3}^{3}} r\,+\,2\alpha b_{1} k_{1} M_{3} r^{2}\,+\,4\alpha k_{1} M_{1} M_{2} M_{3} r^{2} \end{array} $$
$$\begin{array}{@{}rcl@{}} &&\!\!\!\!+\alpha b_{1} M_{1} {M_{3}^{2}} r^{2}-2\alpha a_{1} M_{2} {M_{3}^{2}} r^{2}+2a_{1} k_{1} M_{3} r^{3}\\[-1pt] &&\!\!\!\!+\left. {2k_{1} {M_{1}^{2}} M_{3} r^{3}} \right)+V_{2} \!\left( {2\alpha^{3}{k_{1}^{2}} M_{3}} \right. \\[-1pt] && \!\!\!\!+2\alpha^{3}k_{1} {M_{2}^{2}} M_{3} +6\alpha^{3}k_{1} M_{1} {M_{3}^{2}} -\alpha^{3}b_{1} M_{2} {M_{3}^{2}} \\&&\!\!\!\!-4\alpha^{3}a_{1} {M_{3}^{3}} +5\alpha^{2}b_{1} k_{1} M_{3} r \\ && \!\!\!\!+8\alpha^{2}k_{1} M_{1} M_{2} M_{3} r+\alpha^{2}b_{1} {M_{2}^{2}} M_{3} r\\&&\!\!\!\!+7\alpha^{2}b_{1} M_{1} {M_{3}^{2}} r-10\alpha^{2}a_{1} M_{2} {M_{3}^{2}} r \\ && \!\!\!\!+3\alpha {b_{1}^{2}} M_{3} r^{2}+2\alpha a_{1} k_{1} M_{3} r^{2}+2\alpha k_{1} {M_{1}^{2}} M_{3} r^{2}\\&&\!\!\!\!+8\alpha b_{1} M_{1} M_{2} M_{3} r^{2} -4\alpha a_{1} {M_{2}^{2}} M_{3} r^{2}\\&&\!\!\!\!+3a_{1} b_{1} M_{3} r^{3}+\left. {3b_{1} {M_{1}^{2}} M_{3} r^{3}} \right)\\&&\!\!\!\!+V_{3} \!\left( {2\alpha^{3}b_{1} k_{1} M_{3}} \right.+4\alpha^{3}k_{1} M_{1} M_{2} M_{3} \\ && \!\!\!\!+\alpha^{3}b_{1} M_{1} {M_{3}^{2}} -2\alpha^{3}a_{1} M_{2} {M_{3}^{2}} +3\alpha^{2}{b_{1}^{2}} M_{3} r\\ &&\!\!\!\!+2\alpha^{2}a_{1} k_{1} M_{3} r+2\alpha^{2}k_{1} {M_{1}^{2}} M_{3} r \\ && \!\!\!\!+8\alpha^{2}b_{1} M_{1} M_{2} M_{3} r-4\alpha^{2}a_{1} {M_{2}^{2}} M_{3} r\\&&\!\!\!\!-\alpha b_{1} k_{1} M_{1} r^{2}+\alpha {b_{1}^{2}} M_{2} r^{2}-2\alpha a_{1} k_{1} M_{2} r^{2} \\ && \!\!\!\!-4\alpha k_{1} {M_{1}^{2}} M_{2} r^{2}+3\alpha b_{1} M_{1} {M_{2}^{2}} r^{2}\\ &&\!\!\!\!-2\alpha a_{1} {M_{2}^{3}} r^{2}+7\alpha a_{1} b_{1} M_{3} r^{2}+5\alpha b_{1} {M_{1}^{2}} M_{3} r^{2} \\ && \!\!\!\!+4\alpha a_{1} M_{1} M_{2} M_{3} r^{2}-2a_{1} k_{1} M_{1} r^{3}\\ &&\!\!\!\!-2k_{1} {M_{1}^{3}} r^{3}+a_{1} b_{1} M_{2} r^{3}+b_{1} {M_{1}^{2}} M_{2} r^{3} \\ && \!\!\!\!+4{a_{1}^{2}} M_{3} r^{3}+\left. {4a_{1} {M_{1}^{2}} M_{3} r^{3}} \right)\\ &&\!\!\!\!+V_{4} \!\left( {2\alpha^{3}a_{1} k_{1} M_{3}} \right.+2\alpha^{3}k_{1} {M_{1}^{2}} M_{3}\\ && \!\!\!\!+3\alpha^{2}a_{1} b_{1} M_{3} r \,+\,3\alpha^{2}b_{1} {M_{1}^{2}} M_{3} r\,-\,2\alpha a_{1} k_{1} M_{1} r^{2}\\ &&\!\!\!\!-2\alpha k_{1} {M_{1}^{3}} r^{2}+\alpha a_{1} b_{1} M_{2} r^{2}+\alpha b_{1} {M_{1}^{2}} M_{2} r^{2} \\ && \!\!\!\!+4\alpha {a_{1}^{2}} M_{3} r^{2}+4\alpha a_{1} {M_{1}^{2}} M_{3} r^{2}-a_{1} b_{1} M_{1} r^{3}\\ &&\!\!\!\!-b_{1} {M_{1}^{3}} r^{3}+2{a_{1}^{2}} M_{2} r^{3}+\left. {\left. {2a_{1} {M_{1}^{2}} M_{2} r^{3}} \right)} \right] {\overset{h_{1} -z}\vert}{h_{2} -z} \end{array} $$
$$\begin{array}{@{}rcl@{}} V_{1} \!\!\!\!&=& \!\!\!\!W_{1} +W_{2} +W_{3} +W_{4} , \\[-1pt] V_{2} \!\!\!\!&=& \!\!\!\!r_{1} W_{1} +r_{2} W_{2} +r_{3} W_{3} +r_{4} W_{4} , \\[-1pt] V_{3} \!\!\!\!&=& \!\!\!\!{r_{1}^{2}} W_{1} +{r_{2}^{2}} W_{2} +{r_{3}^{2}} W_{3} +{r_{4}^{2}} W_{4} , \\[-1pt] V_{4} \!\!\!\!&=& \!\!\!\!{r_{1}^{3}} W_{1} +{r_{2}^{3}} W_{2} +{r_{3}^{3}} W_{3} +{r_{4}^{3}} W_{4} ,\end{array} $$
$$\begin{array}{@{}rcl@{}} W_{1} \!\!\!\! &=& \!\!\!\!\log \left[{\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}} {\left( {\zeta^{\prime}-r_{1}} \right)} / \left( 2k_{1} +b_{1} \zeta^{\prime}+b_{1} r_{1} \right.\right.\\ &&\left.\left. \!\!\!\!+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}} \right) \right] \\ &&\!\!\!\!\left/\! \left[ \sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}} \left( {a_{1} +{M_{1}^{2}}} \right)\right.\right.\\ && \left.\!\!\!\!\times\left( {r_{1} -r_{2}} \right)\left( {r_{1} -r_{3}} \right)\left( {r_{1} -r_{4}} \right) {\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}}\right] \\[-2pt] W_{2} \!\!\!\!&=& \!\!\!\!\log \left[{\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}} {\left( {\zeta^{\prime}-r_{2}} \right)} / \left( 2k_{1} +b_{1} \zeta^{\prime}+b_{1} r_{2} \right.\right.\\ &&\left.\left.\!\!\!\!+2a_{1} \zeta^{\prime}r_{2} +2R^{\prime}\sqrt {a_{1} {r_{2}^{2}} +b_{1} r_{2} +k_{1}} \right) \right] \\ &&\!\!\!\!\left/\! \left[ \left. {\sqrt {a_{1} {r_{2}^{2}} +b_{1} r_{2} +k_{1}} } \right]\left( {a_{1} +{M_{1}^{2}}} \right)\right.\right.\\[-2pt] && \left.\!\!\!\!\times\left( {-r_{1} +r_{2}} \right)\left( {r_{2} -r_{3}} \right)\left( {r_{2} -r_{4}} \right) {\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}}\right] \\ W_{3} \!\!\!\!&=& \!\!\!\!\log \left[{\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}} {\left( {\zeta^{\prime}-r_{3}} \right)} / \left( 2k_{1} +b_{1} \zeta^{\prime}+b_{1} r_{3} \right.\right.\\&& \left.\left.\!\!\!\!+2a_{1} \zeta^{\prime}r_{3} +2R^{\prime}\sqrt {a_{1} {r_{3}^{2}} +b_{1} r_{3} +k_{1}} \right) \right] \\ &&\!\!\!\!\left/ \!\left[ \sqrt {a_{1} {r_{3}^{2}} +b_{1} r_{3} +k_{1}} \left( {a_{1} +{M_{1}^{2}}} \right)\right.\right.\\ &&\left.\!\!\!\!\times\left( {-r_{1} +r_{3}} \right)\left( {-r_{2} +r_{3}} \right)\left( {r_{3} -r_{4}} \right) {\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}}\right] \end{array} $$
$$\begin{array}{@{}rcl@{}} W_{4} \!\!\!\!&=& \!\!\!\!\log \left[{\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}} {\left( {\zeta^{\prime}-r_{4}} \right)} / \left( 2k_{1} +b_{1} \zeta^{\prime}+b_{1} r_{4} \right.\right.\\ &&\left.\left.\!\!\!\!+2a_{1} \zeta^{\prime}r_{4} +2R^{\prime}\sqrt {a_{1} {r_{4}^{2}} +b_{1} r_{4} +k_{1}} \right) \right] \\ &&\!\!\!\!\left/\! \left[ \sqrt {a_{1} {r_{4}^{2}} +b_{1} r_{4} +k_{1}} \left( {a_{1} +{M_{1}^{2}}} \right)\right.\right.\\ &&\left.\!\!\!\!\times\left( {-r_{1} +r_{4}} \right)\left( {-r_{2} +r_{4}} \right)\left( {-r_{3} +r_{4}} \right) {\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}}\right] \end{array} $$
$$\begin{array}{@{}rcl@{}} V_{5} \!\!\!\!&=&\!\!\!\!2\alpha^{3}k_{1} M_{3} +3\alpha^{2}b_{1} M_{3} r-2\alpha k_{1} M_{1} r^{2} \\ &&\!\!\!\!+\alpha b_{1} M_{2} r^{2}+4\alpha a_{1} M_{3} r^{2}-b_{1} M_{1} r^{3}+2a_{1} M_{2} r^{3} \\ V_{6} \!\!\!\!&=&\!\!\!\!\alpha^{4}{M_{3}^{2}} +2\alpha^{3}M_{2} M_{3} r+\alpha^{2}k_{1} r^{2}+\alpha^{2}{M_{2}^{2}} r^{2} \\ &&\!\!\!\!+2\alpha^{2}M_{1} M_{3} r^{2}+\alpha b_{1} r^{3}+2\alpha M_{1} M_{2} r^{3}\\&&\!\!\!\!+a_{1} r^{4}+{M_{1}^{2}} r^{4} \end{array} $$

Rest of the integrations on the RHS of equation (A3) can be handled easily by considering expressions (A4) with necessary changes as per the following details:For g 2(x,y,z):

$$\begin{array}{l} {\begin{array}{*{20}c} \hfill \end{array}}{\kern6pt}a_{1} ={m_{2}^{2}} +{m_{3}^{2}} +1,{\begin{array}{*{20}c} \hfill & {b_{1} =2\left( {m_{2} c_{2} +m_{3} c_{3}} \right)} \hfill, \end{array}} \\ {\begin{array}{*{20}c} \hfill & {{\kern1pt}k_{1} ={c_{2}^{2}} +{c_{3}^{2}} ,} \hfill \end{array}} {\begin{array}{*{20}c} \hfill \end{array}} M_{1} =m_{2} m_{3} , \\ {\begin{array}{*{20}c} \hfill & {M_{2} =m_{2} c_{3} +m_{3} c_{2} ,} \hfill \end{array}} {\begin{array}{*{20}c} \hfill & {M_{3} =c_{2} c_{3} ,} \hfill \end{array}} \end{array} $$

For g 3(x,y,z):

$$\begin{array}{l} {\begin{array}{*{20}c} \hfill \end{array}} {\kern6pt}a_{1} ={m_{1}^{2}} +{m_{4}^{2}} +1,{\begin{array}{*{20}c} \hfill & {b_{1} =2\left( {m_{1} c_{1} +m_{4} c_{4}} \right)}, \hfill \end{array}} \\ {\begin{array}{*{20}c} \hfill & {{\kern1pt}k_{1} ={c_{1}^{2}} +{c_{4}^{2}} ,} \hfill \end{array}} \quad M_{1} =m_{1} m_{4} , \\ {\begin{array}{*{20}c} \hfill & {M_{2} =m_{1} c_{4} +m_{4} c_{1} ,} \hfill \end{array}} {\begin{array}{*{20}c} \hfill & {M_{3} =c_{1} c_{4} ,} \hfill \end{array}} \end{array} $$

For g 4(x,y,z):

$$\begin{array}{@{}rcl@{}} a_{1}\!\!\!\!& =&\!\!\!\!{m_{1}^{2}} +{m_{3}^{2}} +1,\quad {b_{1} =2\left( {m_{1} c_{1} +m_{3} c_{3}} \right)} , \\ k_{1} \!\!\!\!&=&\!\!\!\!{c_{1}^{2}} +{c_{3}^{2}} ,\quad M_{1} =m_{1} m_{3} ,\\ &&{\kern-2.7pc}M_{2}=m_{1} c_{3} +m_{3} c_{1} , \quad {M_{3} =c_{1} c_{3} }. \end{array} $$

Then, the final expression for gravity effect of proposed pyramid model with depth-wise parabolic density contrast, works out to be

$$ g_{\text{pyramid}} \left( {x,y,z} \right)=\gamma {\Delta} {\rho_{0}^{3}}\left( {g_{1} -g_{2} -g_{3} +g_{4}} \right). $$
(A5)

where g 1, g 2, g 3 and g 4 are the gravity expressions of all terms on RHS of equation (A3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GOKULA, A.P., SASTRY, R.G. Gravitational attraction of a vertical pyramid model of flat top-and-bottom with depth-wise parabolic density variation. J Earth Syst Sci 124, 1735–1744 (2015). https://doi.org/10.1007/s12040-015-0633-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-015-0633-2

Keywords

Navigation