Appendix
ᅟ
1.1 Expression of the gravity anomaly for pyramid model
From equations (3 and 4), we can rewrite the parabolic density function \({\Delta } \rho (\zeta ^{\prime })\) and the limits \(\xi ^{\prime }\) and \(\eta ^{\prime }\) of equation (3) as:
$$ \left. {\begin{array}{l} {\Delta} \rho \left( {\zeta^{\prime}} \right)={\Delta {\rho_{0}^{3}}} / {\left[ {r-\alpha \zeta^{\prime}} \right]^{2}}, \\ r={\Delta} \rho_{0} -\alpha \left( {z-h_{1}} \right), \\ \xi^{\prime}=\xi_{l}^{\prime} -x=m_{1} \zeta^{\prime}+c_{1} , \\ \xi^{\prime}=\xi_{u}^{\prime} -x=m_{2} \zeta^{\prime}+c_{2} , \\ \eta^{\prime}=\eta_{l}^{\prime} -y=m_{3} \zeta^{\prime}+c_{3} , \\ \eta^{\prime}=\eta_{u}^{\prime} -y=m_{4} \zeta^{\prime}+c_{4} , \end{array}} \right\} $$
(A1)
where
$$ \left. {\begin{array}{l} m_{1} ={\left( {\xi_{3} -\xi_{1}} \right)} / {\left( {h_{2} -h_{1}} \right)}, \\[-.5pt] m_{2} ={\left( {\xi_{4} -\xi_{2}} \right)} / {\left( {h_{2} -h_{1}} \right)}, \\[-.5pt] m_{3} ={\left( {\eta_{3} -\eta_{1}} \right)} / {\left( {h_{2} -h_{1}} \right)}, \\ m_{4} ={\left( {\eta_{4} -\eta_{2}} \right)} / {\left( {h_{2} -h_{1}} \right)}, \\[-.5pt] c_{1} ={\left( {h_{1} -z} \right)\left( {\xi_{1} -\xi_{3}} \right)} / {\left( {h_{2} -h_{1}} \right)}+\xi_{1} -x, \\[-.5pt] c_{2} ={\left( {h_{1} -z} \right)\left( {\xi_{2} -\xi_{4}} \right)} / {\left( {h_{2} -h_{1}} \right)}+\xi_{2} -x, \\[-.5pt] c_{3} ={\left( {h_{1} -z} \right)\left( {\eta_{1} -\eta_{3}} \right)} / {(h_{2} -h_{1} )}+\eta_{1} -y, {\begin{array}{*{20}c} \end{array}} \\ c_{4} ={\left( {h_{1} -z} \right)\left( {\eta_{2} -\eta_{4}} \right)} / {\left( {h_{2} -h_{1}} \right)}+\eta_{2} -y. \end{array}} \right\} $$
(A2)
Then, by performing integration with respect to \(\xi ^{\prime }\) and \(\eta ^{\prime }\) in equation (3), we get:
$$\begin{array}{@{}rcl@{}} &&g_{\text{pyramid}} \left( {x,y,z} \right)=\gamma {\Delta} {\rho_{0}^{3}}\int\limits_{\zeta^{\prime}=h_{1} -z}^{h_{2} -z} 1 / \left[ {r-\alpha \zeta^{\prime}} \right]^{2}\\[-2pt] &&\times\left\{{\vphantom{\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right)}} \tan^{-1}\left[{\vphantom{\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right)}} {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)\left( {m_{4} \zeta^{\prime}+c_{4}} \right)}\right.\right.\\[-2pt] && \left/\left. \!\!\!\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right) \right] \right. \\[-2pt] \end{array} $$
$$\begin{array}{@{}rcl@{}} &&-\tan^{-1}\left[{\vphantom{\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right)}} {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)\left( {m_{3} \zeta^{\prime}+c_{3}} \right)} \right.\\&& \left/\!\!\!\left.{\left( {\zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{3} \zeta^{\prime}+c_{3}} \right)^{2}+\zeta^{\prime2}}} \right)} \right]\right. \\ &&-\tan^{-1}\left[{\vphantom{\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right)}} {\left( {m_{1} \zeta^{\prime}+c_{1}} \right)\left( {m_{4} \zeta^{\prime}+c_{4}} \right)} \right.\\ &&\left/ \!\!\!\left.\left( {\zeta^{\prime}\sqrt {\left( {m_{1} \zeta^{\prime}+c_{1}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}}\right)^{2}+\zeta^{\prime2}}} \right) \right]\right. \\ &&+\tan^{-1}\left[{\vphantom{\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right)}} \left( {m_{1} \zeta^{\prime}+c_{1}} \right)\left( {m_{3} \zeta^{\prime}+c_{3}} \right) \right.\\[-2pt] &&\left/\!\!\!\left.\left. \left( {\zeta^{\prime}\sqrt {\left( {m_{1} \zeta^{\prime}\,+\,c_{1}} \right)^{2}\,+\,\left( {m_{3} \zeta^{\prime}\,+\,c_{3}} \right)^{2}\,+\,\zeta^{\prime2}}} \right) \right] \right\}\! d\zeta^{\prime}.\right.\\ \end{array} $$
(A3)
As the integration of terms on RHS of equation (A3) is an involved job, we undertake the integration task in a systematic manner. Wolfram Mathematica 9.0.1 is used for carrying out integration. A cursory look at equation (A3) reveals that RHS have four terms. Here, we include the result of integration for the first terms of the RHS part of equation (A3).
$$\begin{array}{@{}rcl@{}} && g_{1} \left( {x,y,z} \right)=\int\limits_{h_{1} -z}^{h_{2} -z} {1 / {\left[ {r-\alpha \zeta^{\prime}} \right]}^{2}} \\ &&\times\left\{{\vphantom{\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right)}}\tan^{-1}\left[{\vphantom{\left( \zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}+c_{2}} \right)^{2}+\left( {m_{4} \zeta^{\prime}+c_{4}} \right)^{2}+\zeta^{\prime2}} \right)}}\left( {m_{2} \zeta^{\prime}+c_{2}} \right)\left( {m_{4} \zeta^{\prime}+c_{4}} \right) \right.\right.\\ &&\left/\!\!\!\left. \left. \left( {\zeta^{\prime}\sqrt {\left( {m_{2} \zeta^{\prime}\,+\,c_{2}} \right)^{2}\,+\,\left( {m_{4} \zeta^{\prime}\,+\,c_{4}} \right)^{2}\,+\,\zeta^{\prime2}}} \right) \right] \right\} d\zeta^{\prime}\right.. \end{array} $$
Upon integration with respect to ζ, we get:
$$\begin{array}{@{}rcl@{}} && g_{1} \left( {x,y,z} \right)\,=\,-\!\tan^{-1}\!{\left[ {{\left( {M_{1} \zeta^{\prime2}\,+\,M_{2} \zeta^{\prime}\,+\,M_{3}} \right)} \!/\! {\left( {\zeta^{\prime}R^{\prime}} \right)}} \right]} \\ &&/ {\left[ {\alpha \left( {-r+\alpha \zeta^{\prime}} \right)} \right]} \\ && {-V_{5} {\log \left( {-r+\alpha \zeta^{\prime}} \right)} / {\left( {2\sqrt {\alpha^{2}k_{1} \,+\,\alpha b_{1} r+a_{1} r^{2}} V_{6}} \right)}} \\ && +V_{5} \log \left( {\vphantom{\left.+2\sqrt {\alpha^{2}k_{1} +\alpha b_{1} r+a_{1} r^{2}} R^{\prime} \right) /}}{2\alpha k_{1}} +b_{1} r+\alpha b_{1} \zeta^{\prime}+2a_{1} r\zeta^{\prime}\right.\\ &&\left.+2\sqrt {\alpha^{2}k_{1} +\alpha b_{1} r+a_{1} r^{2}} R^{\prime} \right) \\ &&\left/\!\!\left( {2\sqrt {\alpha^{2}k_{1} +\alpha b_{1} r+a_{1} r^{2}} V_{6}} \right)\right.\\ &&+{V_{z1}} / {\left( {2\alpha V_{6}} \right)} {\overset{h_{2} -z}\vert}\underset{h_{1} -z}, \end{array} $$
(A4)
where
$$\begin{array}{@{}rcl@{}} V_{z1}\!\!\!\! &=&\!\!\!\!\left[ {V_{1} \!\left( {4\alpha^{3}k_{1} M_{2} {M_{3}^{2}} -3\alpha^{3}b_{1} {M_{3}^{3}} +2\alpha^{2}{k_{1}^{2}} M_{3} r} \right.} \right. \\ &&\!\!\!\!+2\alpha^{2}k_{1} {M_{2}^{2}} M_{3} r\,+\,6\alpha^{2}k_{1} M_{1} {M_{3}^{2}} r\,-\,\alpha^{2}b_{1} M_{2} {M_{3}^{2}} r\\&&\!\!\!\!-4\alpha^{2}a_{1} {M_{3}^{3}} r\,+\,2\alpha b_{1} k_{1} M_{3} r^{2}\,+\,4\alpha k_{1} M_{1} M_{2} M_{3} r^{2} \end{array} $$
$$\begin{array}{@{}rcl@{}} &&\!\!\!\!+\alpha b_{1} M_{1} {M_{3}^{2}} r^{2}-2\alpha a_{1} M_{2} {M_{3}^{2}} r^{2}+2a_{1} k_{1} M_{3} r^{3}\\[-1pt] &&\!\!\!\!+\left. {2k_{1} {M_{1}^{2}} M_{3} r^{3}} \right)+V_{2} \!\left( {2\alpha^{3}{k_{1}^{2}} M_{3}} \right. \\[-1pt] && \!\!\!\!+2\alpha^{3}k_{1} {M_{2}^{2}} M_{3} +6\alpha^{3}k_{1} M_{1} {M_{3}^{2}} -\alpha^{3}b_{1} M_{2} {M_{3}^{2}} \\&&\!\!\!\!-4\alpha^{3}a_{1} {M_{3}^{3}} +5\alpha^{2}b_{1} k_{1} M_{3} r \\ && \!\!\!\!+8\alpha^{2}k_{1} M_{1} M_{2} M_{3} r+\alpha^{2}b_{1} {M_{2}^{2}} M_{3} r\\&&\!\!\!\!+7\alpha^{2}b_{1} M_{1} {M_{3}^{2}} r-10\alpha^{2}a_{1} M_{2} {M_{3}^{2}} r \\ && \!\!\!\!+3\alpha {b_{1}^{2}} M_{3} r^{2}+2\alpha a_{1} k_{1} M_{3} r^{2}+2\alpha k_{1} {M_{1}^{2}} M_{3} r^{2}\\&&\!\!\!\!+8\alpha b_{1} M_{1} M_{2} M_{3} r^{2} -4\alpha a_{1} {M_{2}^{2}} M_{3} r^{2}\\&&\!\!\!\!+3a_{1} b_{1} M_{3} r^{3}+\left. {3b_{1} {M_{1}^{2}} M_{3} r^{3}} \right)\\&&\!\!\!\!+V_{3} \!\left( {2\alpha^{3}b_{1} k_{1} M_{3}} \right.+4\alpha^{3}k_{1} M_{1} M_{2} M_{3} \\ && \!\!\!\!+\alpha^{3}b_{1} M_{1} {M_{3}^{2}} -2\alpha^{3}a_{1} M_{2} {M_{3}^{2}} +3\alpha^{2}{b_{1}^{2}} M_{3} r\\ &&\!\!\!\!+2\alpha^{2}a_{1} k_{1} M_{3} r+2\alpha^{2}k_{1} {M_{1}^{2}} M_{3} r \\ && \!\!\!\!+8\alpha^{2}b_{1} M_{1} M_{2} M_{3} r-4\alpha^{2}a_{1} {M_{2}^{2}} M_{3} r\\&&\!\!\!\!-\alpha b_{1} k_{1} M_{1} r^{2}+\alpha {b_{1}^{2}} M_{2} r^{2}-2\alpha a_{1} k_{1} M_{2} r^{2} \\ && \!\!\!\!-4\alpha k_{1} {M_{1}^{2}} M_{2} r^{2}+3\alpha b_{1} M_{1} {M_{2}^{2}} r^{2}\\ &&\!\!\!\!-2\alpha a_{1} {M_{2}^{3}} r^{2}+7\alpha a_{1} b_{1} M_{3} r^{2}+5\alpha b_{1} {M_{1}^{2}} M_{3} r^{2} \\ && \!\!\!\!+4\alpha a_{1} M_{1} M_{2} M_{3} r^{2}-2a_{1} k_{1} M_{1} r^{3}\\ &&\!\!\!\!-2k_{1} {M_{1}^{3}} r^{3}+a_{1} b_{1} M_{2} r^{3}+b_{1} {M_{1}^{2}} M_{2} r^{3} \\ && \!\!\!\!+4{a_{1}^{2}} M_{3} r^{3}+\left. {4a_{1} {M_{1}^{2}} M_{3} r^{3}} \right)\\ &&\!\!\!\!+V_{4} \!\left( {2\alpha^{3}a_{1} k_{1} M_{3}} \right.+2\alpha^{3}k_{1} {M_{1}^{2}} M_{3}\\ && \!\!\!\!+3\alpha^{2}a_{1} b_{1} M_{3} r \,+\,3\alpha^{2}b_{1} {M_{1}^{2}} M_{3} r\,-\,2\alpha a_{1} k_{1} M_{1} r^{2}\\ &&\!\!\!\!-2\alpha k_{1} {M_{1}^{3}} r^{2}+\alpha a_{1} b_{1} M_{2} r^{2}+\alpha b_{1} {M_{1}^{2}} M_{2} r^{2} \\ && \!\!\!\!+4\alpha {a_{1}^{2}} M_{3} r^{2}+4\alpha a_{1} {M_{1}^{2}} M_{3} r^{2}-a_{1} b_{1} M_{1} r^{3}\\ &&\!\!\!\!-b_{1} {M_{1}^{3}} r^{3}+2{a_{1}^{2}} M_{2} r^{3}+\left. {\left. {2a_{1} {M_{1}^{2}} M_{2} r^{3}} \right)} \right] {\overset{h_{1} -z}\vert}{h_{2} -z} \end{array} $$
$$\begin{array}{@{}rcl@{}} V_{1} \!\!\!\!&=& \!\!\!\!W_{1} +W_{2} +W_{3} +W_{4} , \\[-1pt] V_{2} \!\!\!\!&=& \!\!\!\!r_{1} W_{1} +r_{2} W_{2} +r_{3} W_{3} +r_{4} W_{4} , \\[-1pt] V_{3} \!\!\!\!&=& \!\!\!\!{r_{1}^{2}} W_{1} +{r_{2}^{2}} W_{2} +{r_{3}^{2}} W_{3} +{r_{4}^{2}} W_{4} , \\[-1pt] V_{4} \!\!\!\!&=& \!\!\!\!{r_{1}^{3}} W_{1} +{r_{2}^{3}} W_{2} +{r_{3}^{3}} W_{3} +{r_{4}^{3}} W_{4} ,\end{array} $$
$$\begin{array}{@{}rcl@{}} W_{1} \!\!\!\! &=& \!\!\!\!\log \left[{\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}} {\left( {\zeta^{\prime}-r_{1}} \right)} / \left( 2k_{1} +b_{1} \zeta^{\prime}+b_{1} r_{1} \right.\right.\\ &&\left.\left. \!\!\!\!+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}} \right) \right] \\ &&\!\!\!\!\left/\! \left[ \sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}} \left( {a_{1} +{M_{1}^{2}}} \right)\right.\right.\\ && \left.\!\!\!\!\times\left( {r_{1} -r_{2}} \right)\left( {r_{1} -r_{3}} \right)\left( {r_{1} -r_{4}} \right) {\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}}\right] \\[-2pt] W_{2} \!\!\!\!&=& \!\!\!\!\log \left[{\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}} {\left( {\zeta^{\prime}-r_{2}} \right)} / \left( 2k_{1} +b_{1} \zeta^{\prime}+b_{1} r_{2} \right.\right.\\ &&\left.\left.\!\!\!\!+2a_{1} \zeta^{\prime}r_{2} +2R^{\prime}\sqrt {a_{1} {r_{2}^{2}} +b_{1} r_{2} +k_{1}} \right) \right] \\ &&\!\!\!\!\left/\! \left[ \left. {\sqrt {a_{1} {r_{2}^{2}} +b_{1} r_{2} +k_{1}} } \right]\left( {a_{1} +{M_{1}^{2}}} \right)\right.\right.\\[-2pt] && \left.\!\!\!\!\times\left( {-r_{1} +r_{2}} \right)\left( {r_{2} -r_{3}} \right)\left( {r_{2} -r_{4}} \right) {\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}}\right] \\ W_{3} \!\!\!\!&=& \!\!\!\!\log \left[{\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}} {\left( {\zeta^{\prime}-r_{3}} \right)} / \left( 2k_{1} +b_{1} \zeta^{\prime}+b_{1} r_{3} \right.\right.\\&& \left.\left.\!\!\!\!+2a_{1} \zeta^{\prime}r_{3} +2R^{\prime}\sqrt {a_{1} {r_{3}^{2}} +b_{1} r_{3} +k_{1}} \right) \right] \\ &&\!\!\!\!\left/ \!\left[ \sqrt {a_{1} {r_{3}^{2}} +b_{1} r_{3} +k_{1}} \left( {a_{1} +{M_{1}^{2}}} \right)\right.\right.\\ &&\left.\!\!\!\!\times\left( {-r_{1} +r_{3}} \right)\left( {-r_{2} +r_{3}} \right)\left( {r_{3} -r_{4}} \right) {\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}}\right] \end{array} $$
$$\begin{array}{@{}rcl@{}} W_{4} \!\!\!\!&=& \!\!\!\!\log \left[{\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}} {\left( {\zeta^{\prime}-r_{4}} \right)} / \left( 2k_{1} +b_{1} \zeta^{\prime}+b_{1} r_{4} \right.\right.\\ &&\left.\left.\!\!\!\!+2a_{1} \zeta^{\prime}r_{4} +2R^{\prime}\sqrt {a_{1} {r_{4}^{2}} +b_{1} r_{4} +k_{1}} \right) \right] \\ &&\!\!\!\!\left/\! \left[ \sqrt {a_{1} {r_{4}^{2}} +b_{1} r_{4} +k_{1}} \left( {a_{1} +{M_{1}^{2}}} \right)\right.\right.\\ &&\left.\!\!\!\!\times\left( {-r_{1} +r_{4}} \right)\left( {-r_{2} +r_{4}} \right)\left( {-r_{3} +r_{4}} \right) {\vphantom{+2a_{1} \zeta^{\prime}r_{1} +2R^{\prime}\sqrt {a_{1} {r_{1}^{2}} +b_{1} r_{1} +k_{1}}}}\right] \end{array} $$
$$\begin{array}{@{}rcl@{}} V_{5} \!\!\!\!&=&\!\!\!\!2\alpha^{3}k_{1} M_{3} +3\alpha^{2}b_{1} M_{3} r-2\alpha k_{1} M_{1} r^{2} \\ &&\!\!\!\!+\alpha b_{1} M_{2} r^{2}+4\alpha a_{1} M_{3} r^{2}-b_{1} M_{1} r^{3}+2a_{1} M_{2} r^{3} \\ V_{6} \!\!\!\!&=&\!\!\!\!\alpha^{4}{M_{3}^{2}} +2\alpha^{3}M_{2} M_{3} r+\alpha^{2}k_{1} r^{2}+\alpha^{2}{M_{2}^{2}} r^{2} \\ &&\!\!\!\!+2\alpha^{2}M_{1} M_{3} r^{2}+\alpha b_{1} r^{3}+2\alpha M_{1} M_{2} r^{3}\\&&\!\!\!\!+a_{1} r^{4}+{M_{1}^{2}} r^{4} \end{array} $$
Rest of the integrations on the RHS of equation (A3) can be handled easily by considering expressions (A4) with necessary changes as per the following details:For g
2(x,y,z):
$$\begin{array}{l} {\begin{array}{*{20}c} \hfill \end{array}}{\kern6pt}a_{1} ={m_{2}^{2}} +{m_{3}^{2}} +1,{\begin{array}{*{20}c} \hfill & {b_{1} =2\left( {m_{2} c_{2} +m_{3} c_{3}} \right)} \hfill, \end{array}} \\ {\begin{array}{*{20}c} \hfill & {{\kern1pt}k_{1} ={c_{2}^{2}} +{c_{3}^{2}} ,} \hfill \end{array}} {\begin{array}{*{20}c} \hfill \end{array}} M_{1} =m_{2} m_{3} , \\ {\begin{array}{*{20}c} \hfill & {M_{2} =m_{2} c_{3} +m_{3} c_{2} ,} \hfill \end{array}} {\begin{array}{*{20}c} \hfill & {M_{3} =c_{2} c_{3} ,} \hfill \end{array}} \end{array} $$
For g
3(x,y,z):
$$\begin{array}{l} {\begin{array}{*{20}c} \hfill \end{array}} {\kern6pt}a_{1} ={m_{1}^{2}} +{m_{4}^{2}} +1,{\begin{array}{*{20}c} \hfill & {b_{1} =2\left( {m_{1} c_{1} +m_{4} c_{4}} \right)}, \hfill \end{array}} \\ {\begin{array}{*{20}c} \hfill & {{\kern1pt}k_{1} ={c_{1}^{2}} +{c_{4}^{2}} ,} \hfill \end{array}} \quad M_{1} =m_{1} m_{4} , \\ {\begin{array}{*{20}c} \hfill & {M_{2} =m_{1} c_{4} +m_{4} c_{1} ,} \hfill \end{array}} {\begin{array}{*{20}c} \hfill & {M_{3} =c_{1} c_{4} ,} \hfill \end{array}} \end{array} $$
For g
4(x,y,z):
$$\begin{array}{@{}rcl@{}} a_{1}\!\!\!\!& =&\!\!\!\!{m_{1}^{2}} +{m_{3}^{2}} +1,\quad {b_{1} =2\left( {m_{1} c_{1} +m_{3} c_{3}} \right)} , \\ k_{1} \!\!\!\!&=&\!\!\!\!{c_{1}^{2}} +{c_{3}^{2}} ,\quad M_{1} =m_{1} m_{3} ,\\ &&{\kern-2.7pc}M_{2}=m_{1} c_{3} +m_{3} c_{1} , \quad {M_{3} =c_{1} c_{3} }. \end{array} $$
Then, the final expression for gravity effect of proposed pyramid model with depth-wise parabolic density contrast, works out to be
$$ g_{\text{pyramid}} \left( {x,y,z} \right)=\gamma {\Delta} {\rho_{0}^{3}}\left( {g_{1} -g_{2} -g_{3} +g_{4}} \right). $$
(A5)
where g
1, g
2, g
3 and g
4 are the gravity expressions of all terms on RHS of equation (A3).