Skip to main content

Comparison of various isostatic marine gravity disturbances

Abstract

We present and compare four types of the isostatic gravity disturbances compiled at sea level over the world oceans and marginal seas. These isostatic gravity disturbances are computed by applying the Airy–Heiskanen (AH), Pratt–Hayford (PH) and Vening Meinesz–Moritz (VMM) isostatic models. In addition, we compute the complete crust-stripped (CCS) isostatic gravity disturbances which are defined based on a principle of minimizing their spatial correlation with the Moho geometry. We demonstrate that each applied compensation scheme yields a distinctive spatial pattern in the resulting isostatic marine gravity field. The AH isostatic gravity disturbances provide the smoothest gravity field (by means of their standard deviation). The AH and VMM isostatic gravity disturbances have very similar spatial patterns due to the fact that the same isostatic principle is applied in both these definitions expect for assuming a local (in the former) instead of a global (in the latter) compensation mechanism. The PH isostatic gravity disturbances are highly spatially correlated with the ocean-floor relief. The CCS isostatic gravity disturbances reveal a signature of the ocean-floor spreading characterized by an increasing density of the oceanic lithosphere with age.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  • Abd-Elmotaal H 1991 Gravity anomalies based on the Vening Meinesz isostatic model and their statistical behaviour; Mitteilungen der geodaetischen Institute der Technischen Universtaet Graz, Vol. 72.

  • Abd-Elmotaal H 1993 Vening Meinesz Moho depths: Traditional, exact and approximated; Manuscr. Geodaet. 18 171–181.

    Google Scholar 

  • Abd-Elmotaal H 2000 Vening Meinesz inverse isostatic problem with local and global Bouguer anomalies; J. Geod. 74 390–398.

    Article  Google Scholar 

  • Abd-Elmotaal H 2004 Isostatic response of the Earth’s crust derived by inverse isostasy; J. Geodyn. 37 (2) 139–153.

    Article  Google Scholar 

  • Airy G B 1855 On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys; Trans. Roy. Soc. (London), Ser. B, Vol. 145.

  • Bagherbandi M, Tenzer R, Sjöberg L E and Novák P 2013 Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction; J. Geodyn. 66 25–37.

    Article  Google Scholar 

  • Bassin C, Laske G and Masters T G 2000 The current limits of resolution for surface wave tomography in North America; EOS Trans. AGU 81 F897.

    Google Scholar 

  • Baudry N and Calmant S 1991 3-D modeling of seamount topography from satellite altimetry; Geophys. Res. Lett. 18 1143–1146.

    Article  Google Scholar 

  • Braitenberg C, Wienecke S and Wang Y 2006 Basement structures from satellite-derived gravity field: South China Sea ridge; J. Geophys. Res. 111 B05407.

    Google Scholar 

  • Gladkikh V and Tenzer R 2011 A mathematical model of the global ocean saltwater density distribution; Pure Appl. Geophys. 169 (1–2) 249–257.

    Article  Google Scholar 

  • Hayford J F 1909 The figure of the earth and isostasy from measurements in the United States; USCGS.

  • Hayford J F and Bowie W 1912 The effect of topography and isostatic compensation upon the intensity of gravity; USCGS Spec. Publ., No. 10.

  • Heiskanen W A and Moritz H 1967 Physical Geodesy; Freeman W.H., New York.

    Google Scholar 

  • Heiskanen W A and Vening Meinesz F A 1958 The Earth and its Gravity Field; McGraw-Hill Book Company, Inc.

  • Hinze W J 2003 Bouguer reduction density, why 2.67? Geophysics 68 (5) 1559–1560.

    Article  Google Scholar 

  • Jung W Y and Vogt P R 1992 Predicting bathymetry from Geosat-ERM and shipborne profiles in the South Atlantic ocean; Tectonophys. 210 235–253.

    Article  Google Scholar 

  • Kaban M K, Schwintzer P and Tikhotsky S A 1999 Global isostatic gravity model of the Earth; Geophys. J. Int. 136 519–536.

    Article  Google Scholar 

  • Lambeck K 1988 Geophysical geodesy: The slow deformations of the Earth; Clarendon Press, Oxford.

    Google Scholar 

  • Makhloof A A 2007 The use of topographic-isostatic mass information in geodetic application; Dissertation D98, Institute of Geodesy and Geoinformation, Bonn.

  • Mayer-Guerr T, Rieser D, Höck E, Brockmann J M, Schuh W -D, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T and Gruber T 2012 The new combined satellite only model GOCO03s; Abstract presented at GGHS2012, Venice.

  • Moritz H 1990 The figure of the Earth; Wichmann H., Karlsruhe.

    Google Scholar 

  • Moritz H 2000 Geodetic Reference System 1980; J. Geod. 74 128–162.

    Article  Google Scholar 

  • Müller R D, Sdrolias M, Gaina C and Roest W R 2008 Age, spreading rates and spreading symmetry of the world’s ocean crust; Geochem. Geophys. Geosyst. 9 Q04006.

    Article  Google Scholar 

  • Parsons B and Sclater J G 1977 An analysis of the variation of the ocean floor bathymetry and heat flow with age ; J. Geophys. Res. 82 803–827.

    Article  Google Scholar 

  • Pavlis N K, Factor J K and Holmes S A 2007 Terrain- related gravimetric quantities computed for the next EGM; In: Gravity Field of the Earth (eds) Kiliçoglu A and Forsberg R, Proceedings of the 1 st International Symposium of the International Gravity Field Service (IGFS), Harita Dergisi, Special Issue No. 18, General Command of Mapping, Ankara, Turkey.

  • Pratt J H 1855 On the attraction of the Himalaya Mountains and of the elevated regions beyond upon the plumb-line in India; Trans. Roy. Soc. London, Ser. B, Vol. 145.

  • Rummel R, Rapp R H, Sünkel H and Tscherning C C 1988 Comparison of global topographic/isostatic models to the Earth’s observed gravitational field; Report, 388, The Ohio State University, Columbus, Ohio, 43210-1247.

  • Sandwell D T and Smith W H F 1997 Marine gravity anomaly from Geosat and ERS-1 satellite altimetry ; J. Geophys. Res. 102 10,039–10,054.

    Article  Google Scholar 

  • Sjöberg L E 1998a On the Pratt and Airy models of isostatic geoid undulations; J. Geodyn. 26 (1) 137–147.

  • Sjöberg L E 1998b The exterior Airy/Heiskanen topographic-isostatic gravity potential, anomaly and the effect of analytical continuation in Stokes’s formula ; J. Geod. 72 654–662.

  • Sjöberg L E 2009 Solving Vening Meinesz-Moritz inverse problem in isostasy; Geophys. J. Int. 179 (3) 1527–1536.

    Article  Google Scholar 

  • Sjöberg L E 2013 On the isostatic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz gravimetric inverse problem; Geophys. J. Int., doi: 10.1093/gji/ggt008.

  • Smith W H F 1993 On the accuracy of digital bathymetry data; J. Geophys. Res. 98 9591–9603.

    Article  Google Scholar 

  • Tenzer R and Bagherbandi M 2012 Reformulation of the Vening-Meinesz Moritz inverse problem of isostasy for isostatic gravity disturbances; Int. J. Geosci. 3 (5) 918–929.

    Article  Google Scholar 

  • Tenzer R, Hamayun and Vajda P 2009a Global maps of the CRUST2.0 crustal components stripped gravity disturbances; J. Geophys. Res. 114 (B) 05408.

  • Tenzer R, Hamayun and Vajda P 2009b A global correlation of the step-wise consolidated crust-stripped gravity field quantities with the topography, bathymetry, and the CRUST2.0 Moho boundary; Contrib. Geophys. Geodesy 39 (2) 133–147.

  • Tenzer R, Abdalla A, Vajda P and Hamayun 2010 The spherical harmonic representation of the gravitational field quantities generated by the ice density contrast; Contrib. Geophys. Geodesy 40 (3) 207–223.

    Google Scholar 

  • Tenzer R, Novák P and Gladkikh V 2011 On the accuracy of the bathymetry-generated gravitational field quantitiesfor a depth-dependent seawater density distribution; Stud. Geophys. Geodaet. 55(4) 609–626.

    Article  Google Scholar 

  • Tenzer R, Novák P, Vajda P, Gladkikh V and Hamayun 2012a Spectral harmonic analysis and synthesis of Earth’s crust gravity field; Comput. Geosci. 16 (1) 193–207.

  • Tenzer R, Gladkikh V, Vajda P and Novák P 2012b Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure; Surv. Geophys. 33 (5) 817–839.

  • Tenzer R, Novák P and Gladkikh V 2012c The bathymetric stripping corrections to gravity field quantities for a depth-dependant model of the seawater density; Mar. Geod. 35 198–220.

  • Tenzer R, Hamayun N. P, Gladkikh V and Vajda P 2012d Global crust-mantle density contrast estimated from EGM2008, DTM2008, CRUST2.0, and ICE-5G; Pure Appl. Geophys. 169 (9) 1663–1678.

  • Tenzer R, Bagherbandi M and Gladkikh V 2012e Signature of the upper mantle density structure in the refined gravity data; Comput. Geosci. 16 (4) 975–986.

  • Tenzer R, Chen W and Ye Z 2015a Empirical model of the gravitational field generated by the oceanic lithosphere; Adv. Spac. Res. 55 (1) 72–82.

  • Tenzer R, Chen W, Tsoulis D, Bagherbandi M, Sjöberg L E, Novák P and Jin S 2015b Analysis of the refined CRUST1.0 crustal model and its gravity field; Surv. Geophys. 36 (1) 139–165.

  • Tsoulis D 2001 A comparison between the Airy–Heiskanen and the Pratt–Hayford isostatic models for the computation of potential harmonic coefficients; J. Geod. 74 (9) 637–643.

    Article  Google Scholar 

  • Turcotte D and Schubert G 2002 Geodynamics; 2nd edn, Cambridge University Press, New York.

    Book  Google Scholar 

  • Vening Meinesz F A 1931 Une nouvelle méthode pour la réduction isostatique régionale de l’intensité de la pesanteur; Bull. Géodésique 29 33–51.

    Article  Google Scholar 

  • Watts A B 2001 Isostasy and flexure of the lithosphere; Cambridge University Press, Cambridge.

    Google Scholar 

  • Wessel P and Watts A B 1988 On the accuracy of marine gravity measurements; J. Geophys. Res. 93 393–413.

    Article  Google Scholar 

  • Wild F and Heck B 2004 Effects of topographic and isostatic masses in satellite gravity gradiometry; In: Proceedings, Second International GOCE User Workshop GOCE. The Geoid and Oceanography, ESA-ESRIN, Frascati, Italy, March 8–10, 2004 (ESA SP – 569, June 2004), CD-ROM.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tenzer, R., Bagherbandi, M. & Sjöberg, L.E. Comparison of various isostatic marine gravity disturbances. J Earth Syst Sci 124, 1235–1245 (2015). https://doi.org/10.1007/s12040-015-0610-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-015-0610-9

Keywords

  • Bathymetry
  • Bouguer gravity correction
  • isostasy
  • marine gravity
  • gravimetric forward modelling.