Skip to main content

Advertisement

Log in

Variations and trends of terrestrial NPP and its relation to climate change in the 10 CMIP5 models

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Using global terrestrial ecosystem net primary productivity (NPP) data, we validated the simulated multi-model ensemble (MME) NPP, analyzed the spatial distribution of global NPP and explored the relationship between NPP and climate variations in historical scenarios of 10 CMIP5 models. The results show that the global spatial pattern of simulated terrestrial ecosystem NPP, is consistent with IGBP NPP, but the values have some differences and there is a huge uncertainty. Considering global climate change, near surface temperature is the major factor affecting the terrestrial ecosystem, followed by the precipitation. This means terrestrial ecosystem NPP is more closely related to near surface temperature than precipitation. Between 1976 and 2005, NPP shows an obvious increasing temporal trend, indicating the terrestrial ecosystem has had a positive response to climate change. MME NPP has increased 3.647PgC during historical period, which shows an increasing temporal trend of 3.9 gCm−2∙100 yr−2 in the past 150 years, also indicating that the terrestrial ecosystem has shown a positive response to climate change in past 150 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ahl D E, Gower S T, Mackay D S, Burrows S N, Norman J M and Diak G R 2005 The effects of aggregated land cover data on estimating NPP in northern Wisconsin; Remote Sens. Environ. 97 (1) 1–14.

    Article  Google Scholar 

  • Arora V, Scinocca J, Boer G, Christian J, Denman K, Flato G, Kharin V, Lee W and Merryfield W 2011 Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases; Geophys. Res. Lett. 38 (5).

  • Bala G, Joshi J, Chaturvedi R K, Gangamani H V, Hashimoto H and Nemani R 2013 Trends and variability of AVHRR-derived NPP in India; Remote Sens. 5 (2) 810–829.

    Article  Google Scholar 

  • Brönnimann S, Diaz H F, Ewen T, Luterbacher J, Neu U and Stolarski R S 2008 Climate variability and extremes during the past 100 years; Springer.

  • Cao M, Prince S D, Small J and Goetz S J 2004 Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981–2000; Ecosystems 7 (3) 233–242.

    Article  Google Scholar 

  • Collins W, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones C, Joshi M and Liddicoat S 2011 Development and evaluation of an Earth-system model-HadGEM2; Geoscientific Model Development Discussions 4 (2) 997–1062.

    Article  Google Scholar 

  • Cramer W, Kicklighter D, Bondeau A, Iii B M, Churkina G, Nemry B, Ruimy A and Schloss A 1999 Comparing global models of terrestrial net primary productivity (NPP): Overview and key results; Global Change Biology 5 (S1) 1–15.

    Article  Google Scholar 

  • Dan L, Ji J and He Y 2007 Use of ISLSCP II data to intercompare and validate the terrestrial net primary production in a land surface model coupled to a general circulation model; J. Geophys. Res.: Atmospheres 112 (D2) 1984–2012.

    Google Scholar 

  • Dan L, Ji J and Li Y 2005 Climatic and biological simulations in a two-way coupled atmosphere-biosphere model (CABM); Global Planet Change 47 (2) 153–169.

    Article  Google Scholar 

  • Dufresne J -L, Foujols M -A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H and Benshila R 2013 Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5; Clim. Dyn. 40 (9–10) 2123–2165.

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M and Fung I 2006 Climate-carbon cycle feedback analysis: Results from the C4 MIP Model Intercomparison; J. Climate 19 (14) 3337–3353.

    Article  Google Scholar 

  • Friedman A R, Hwang Y -T, Chiang J C and Frierson D M 2013 Interhemispheric temperature asymmetry over the Twentieth Century and in future projections; J. Climate 26 (15) 5419–5433.

    Article  Google Scholar 

  • Garrison J 1995 An evaluation of the effect of volcanic eruption on the solar radiation at six Canadian stations; Solar Energy 55 (6) 513–525.

    Article  Google Scholar 

  • Gent P R, Danabasoglu G, Donner L J, Holland M M, Hunke E C, Jayne S R, Lawrence D M, Neale R B, Rasch P J and Vertenstein M 2011 The Community Climate System Model, Version 4; J. Climate 24 (19).

  • Gu G and Adler R F 2010 Precipitation and temperature variations on the interannual time scale: Assessing the impact of ENSO and volcanic eruptions; J. Climate 24 (9) 2258–2270.

    Article  Google Scholar 

  • He Y, Dan L, Dong W, Ji J and Qin D 2005 The terrestrial NPP simulations in China since last glacial maximum; Chinese Sci. Bull. 50 (18) 2074–2079.

    Article  Google Scholar 

  • Ito A and Oikawa T 2000 A model analysis of the relationship between climate perturbations and carbon budget anomalies in global terrestrial ecosystems: 1970 to 1997; Clim. Res. 15 (3) 161–183.

    Article  Google Scholar 

  • Jones C, Lowe J, Liddicoat S and Betts R 2009 Committed terrestrial ecosystem changes due to climate change; Nature Geosci. 2 (7) 484–487.

    Article  Google Scholar 

  • Kicklighter D, Bondeau A, Schloss A, Kaduk J and., Mcguire A, et al. 1999 Comparing global models of terrestrial net primary productivity (NPP): Global pattern and differentiation by major biomes; Global Change Biology 5 (S1) 16–24.

    Article  Google Scholar 

  • Krakauer N Y and Randerson J T 2003 Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings; Global Biogeochemical Cycles 17 (4) 1118–1129.

    Article  Google Scholar 

  • Lindsay K, Bonan G, Doney S, Hoffman F, Lawrence D, Long M, Mahowald N, Moore J, Randerson J and Thornton P 2014 Pre-industrial control and 20th century carbon cycle experiments with the earth system model CESM1 (BGC); J. Climate 27 (24) 8981–9005.

    Article  Google Scholar 

  • Melillo J M, Mcguire A D, Kicklighter D W, Moore B, Vorosmarty C J and Schloss A L 1993 Global climate change and terrestrial net primary production; Nature 363 (6426) 234–240.

    Article  Google Scholar 

  • Nemani R, White M, Thornton P, Nishida K, Reddy S, Jenkins J and Running S 2002 Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States; Geophys. Res. Lett. 29 (10) 106–1–106-4.

    Article  Google Scholar 

  • Nemani R R, Keeling C D, Hashimoto H, Jolly W M, Piper S C, Tucker C J, Myneni R B and Running S W 2003 Climate-driven increases in global terrestrial net primary production from 1982 to 1999; Science 300 (5625) 1560–1563.

    Article  Google Scholar 

  • Olofsson J and Hickler T 2008 Effects of human land-use on the global carbon cycle during the last 6000 years; Vegetation History and Archaeobotany 17 (5) 605–615.

    Article  Google Scholar 

  • Runing S, Baldocchi D, Turner D, Gower S, Bakwin P and Hibbard K 1999 A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data; Remote Sens. Environ. 70 108–127.

    Article  Google Scholar 

  • Shao P, Zeng X, Sakaguchi K, Monson R K and Zeng X 2013 Terrestrial carbon cycle: Climate relations in eight CMIP5 Earth System Models; J. Climate 26 (22) 8744–8764.

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice I C, Arneth A, Bondeau A, Cramer W, Kaplan J, Levis S, Lucht W and Sykes M T 2003 Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model; Global Change Biology 9 (2) 161–185.

    Article  Google Scholar 

  • Taylor R K E, Stouffer R J and Meehl G A 2012 An overview of CMIP5 and the experiment design; Bull. Am. Meteorol. Soc. 93 485–498.

    Article  Google Scholar 

  • Tjiputra J, Roelandt C, Bentsen M, Lawrence D, Lorentzen T and Schwinger J 2012 Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM); Geoscientific Model Development Discussions 5 (4) 3035–3087.

    Article  Google Scholar 

  • Wang S, Zhang M, Li Z, Wang F, Li H, Li Y and Huang X 2011 Glacier area variation and climate change in the Chinese Tianshan Mountains since 1960; J. Geogr. Sci. 21 (2) 263–273.

    Article  Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M and Yokohata T 2011 MIROC-ESM: Model description and basic results of CMIP5-20c3m experiments; Geoscientific Model Development Discussions 4 (2) 1063–1128.

    Article  Google Scholar 

  • Wu Q, Feng J, Dong W, Wang L, Ji D and Chen H 2013a Introducion of the CMIP5 experiments carried out by BNU-ESM; Progressus Inquisitiones de Mutation Climatis 9 (4) 291–294.

    Google Scholar 

  • Wu T, Li W, Ji J, Xin X, Li L, Wang Z, Zhang Y, Li J, Zhang F and Wei M 2013b Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century; J. Geophys. Res.: Atmospheres 118 (10) 4326–4347.

    Google Scholar 

  • Wu T, Song L, Li W, Wang Z, Zhang H, Xin X, Zhang Y, Zhang L and Li J 2013c An overview of BCC climate system model development and application for climate change studies; J. Meteorol. Res. 28 (1) 34–56.

    Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (41205076), the National Basic Research Program of China (2013CB956004 and 2010CB950503), the Hundred Talents Program of the Chinese Academy of Sciences (51Y251551), and the West Light Foundation of the Chinese Academy of Sciences (29Y128871). Authors thank Prof. Stefan Hagemann and ISLSCP II for providing the MPI LAI data and IGBP NPP data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suosuo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Lü, S., Liu, Y. et al. Variations and trends of terrestrial NPP and its relation to climate change in the 10 CMIP5 models. J Earth Syst Sci 124, 395–403 (2015). https://doi.org/10.1007/s12040-015-0545-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-015-0545-1

Keywords

Navigation