Skip to main content

Advertisement

Log in

Variations of aerosol optical depth and Angstrom parameters at a suburban location in Iran during 2009–2010

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Solar irradiance is attenuated spectrally when passing through the earth’s atmosphere and it is strongly dependent on sky conditions, cleanliness of the atmosphere, composition of aerosols and gaseous constituents. In this paper, aerosol optical properties including aerosol optical depth (AOD), Angstrom exponent (α) and Angstrom turbidity coefficient (β) have been investigated during December 2009 to October 2010, in a suburban area of Zanjan (36°N, 43°E, 1700 m), in the north–west of Iran, using meteorological and sun photometric data. Results show that turbidity varies on all time scales, from the seasonal to hourly, because of changes in the atmospheric meteorological parameters. The values of α range from near zero to 1.67. The diurnal variation of AOD in Zanjan is about 15%. The diurnal variability of AOD, showed a similar variation pattern in spring (including March, April, May) and winter (December, January, February) and had a different variation pattern in summer (June, July, August) and autumn (September and October). During February, spring and early summer winds transport continental aerosols mostly from the Iraq (dust events) and cause the increase of beta and turbidity of atmosphere of Zanjan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Andreae M O 1995 Climatic effects of changing atmospheric aerosol levels in World Survey of Climatology 16; In: Future climates of the world (ed.) Henderson-Sellers A (New York: Elsevier), 341p.

    Google Scholar 

  • Angstrom A 1964 The parameters of atmospheric turbidity; Tellus. 16 64–75.

    Article  Google Scholar 

  • Braslau N and Dave J 1973 Effect of aerosols on the transfer of solar energy through realistic model atmospheres. Part 2: Partly absorbing aerosols; J. Appl. Meteorol. 12 616–619.

    Article  Google Scholar 

  • Brogniez C, Buchard B and Auriol F 2008 Validation of UV-visible aerosol optical thickness retrieved from spectroradiometer measurements; Atmos. Chem. Phys. Discuss 8 3895–3919.

    Article  Google Scholar 

  • Cachorro V E, Vergaz R and de Frutos A M 2001 A quantitative comparison of Angstrom turbidity parameter retrieved in different spectral ranges based on spectroradiometer solar radiation measurements; Atmos. Environ. 35 5117–5124.

    Article  Google Scholar 

  • Canada J, Pinazo J M and Bosca J V 1993 Determination of Angstrom turbidity coefficient at Valencia; Renew. Energy 3 621–626.

    Article  Google Scholar 

  • Chang J 1999 The relationship of visibility with physical and chemical characteristics of suspended particles in Kaohsiung City; Master Thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan.

  • Cheng T, Wang H, Xu Y, Li H and Tian L 2006 Climatology of aerosol optical properties in Northern China; Atmos. Environ. 40 1495–1509.

    Article  Google Scholar 

  • Chih-Chung Wen and Hui-HsuanYeh 2010 Comparative influences of airborne pollutants and meteorological parameters on atmospheric visibility and turbidity; Atmos. Res. 96 496–509.

    Article  Google Scholar 

  • Coakley J A, Cess R D and Yurevich F B 1983 The effect of tropospheric aerosols on the Earth’s radiation budget; A parameterization for climate models; J. Atmos. Sci. 40 116–138.

    Article  Google Scholar 

  • Coakley J A and Cess R D 1985 Response of the NCAR Community Climate Model to the radiative forcing by the naturally-occurring tropospheric aerosol; J. Atmos. Sci. 42 1677–1692.

    Article  Google Scholar 

  • Cucumo M, Marinelli V and Oliveti G 1999 Experimental data of the Linke turbidity factor and estimates of the Angstrom turbidity coefficient for Tow Italian localities; Renew. Energy 17 390–410.

    Article  Google Scholar 

  • Cucumo M, Kaliakatsos D and Marinelli V 2000 A calculation method for the estimation of the Linke turbidity factor; Renew. Energy 19 249–258.

    Article  Google Scholar 

  • D’almeida G A 1987 On the variability of desert aerosol radiative characteristics; J. Geophys. Res. 92 3017–3026.

    Article  Google Scholar 

  • Eck T F, Holben B N, Reid J S, Dubovik O, Smirnov A, O’Neill N T, Slutsker I and Kinne S 1999 Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosol; J. Geophys. Res. 104 31,333–31,349.

    Article  Google Scholar 

  • Fouquart Y B, Bonnel M C, Roquai R and Santer A Cerf 1987 Observations of Saharan aerosols: Results of ECLATS field experiment. Part I: Optical thickness and aerosol size distributions; J. Appl. Meteorol. 26(1) 28–37.

    Article  Google Scholar 

  • Gueymard C A 1994 Analysis of monthly average atmospheric precipitable water and turbidity in Canada and Northern United States; Sol. Energy 53 57–71.

    Article  Google Scholar 

  • Gueymard C A and Garrison J D 1998 Critical evaluation of precipitable water and atmospheric turbidity in Canada using measured hourly solar irradiance; Sol. Energy 62 291–307.

    Article  Google Scholar 

  • Gueymard C A and Vignola F 1998 Determination of atmospheric turbidity from the diffuse-beam broadband irradiance ratio; Sol. Energy 63 135–146.

    Article  Google Scholar 

  • Hainel G, Weidert D and Busen R 1990 Absorption of solar radiation in an urban atmosphere; Atmos. Environ. 24 283–292.

    Article  Google Scholar 

  • Hand J L, Kreidenweis S M, Slusser J and Scott G 2004 Comparison of aerosol optical properties derived from sun photometry to estimates inferred from surface measurements in Big Bend National Park Texas; Atmos. Environ. 38 6813–6821.

    Article  Google Scholar 

  • Holben B N, Eck T F, Slutsker I, Tanre D, Buis J P, Setzer A, Vermote E, Reagan J A, Kaufman Y, Nakajima T, Lavenu F, Jankowiak I and Smirnov A 1998 AERONET – A federated instrument network and data archive for aerosol characterization; Rem. Sens. Environ. 66 1–16.

    Article  Google Scholar 

  • Hussain M, Khatun S and Rasul N G 2000 Determination of atmospheric turbidity in Bangladesh; Renew. Energy 20 325–332.

    Article  Google Scholar 

  • Iqbal M 1983 An introduction to solar radiation (New York: Academic Press), 256p.

    Google Scholar 

  • Jacovides C, Varotsos C and Kaltsounides N 1994 Atmospheric turbidity parameters in the highly polluted site of Athens basin; Renew. Energy 4 465–470.

    Article  Google Scholar 

  • Kaskaoutis D G, Kambezidis H D, Hatzianastassiou N, Kosmopoulos P G and Badarinath K V S 2007 Aerosol climatology: On the discrimination of aerosol types over four AERONET sites; Atmos. Chem. Phys. Discuss 7 6357–6411.

    Article  Google Scholar 

  • Katz M, Bailie A and Mermier M 1989 Atmospheric turbidity in a semi-rural site. I: Influence of climatic parameters; Sol. Energy 4 323–328.

    Google Scholar 

  • Kaufman Y J and Fraser R S 1983 Light extinction by aerosols during summer air pollution; J. Clim. Appl. Meteorol. 22 1694–1725.

    Article  Google Scholar 

  • Kaufman Y J, Didier Tam, Dubovik A and Karnieli L A 2001 Remer absorption of sunlight by dust as inferred from satellite and ground-based remote sensing; Geophys. Res. Lett. 28 1479–1482.

    Article  Google Scholar 

  • Kiehl J T and Breigleb B P 1993 The radiative roles of sulfate aerosols and green house gases in climate forcing; Science 260 311–314.

    Article  Google Scholar 

  • Kokhanovsky A A 2008 Aerosol optics, light absorption and scattering by particles in the atmosphere (Springer, Berlin: Praxis Publication Ltd.), 149p.

    Google Scholar 

  • Lelieveld J 2001 The Indian Ocean experiment: Widespread air pollution from south and southeast Asia; Science 291 1031–1036.

    Article  Google Scholar 

  • Liu J, Zheng Y, Zh Li and Wu R 2008 Ground based remote sensing of optical properties in one city north west China; Atmos. Res. 89 194–205.

    Article  Google Scholar 

  • Lodhi N K, Beegum S N, Singh S and Kumar K 2013 Aerosol climatology at Delhi in the western Indo-Gangetic Plain: Microphysics, long-term trends, and source strengths; J. Geophys. Res. 118 1361–1375, doi:10.1002/jgrd.50165.

    Google Scholar 

  • Lyamani H, Olmo F J, Alcantara A and Alados-Arboledas L 2006 Atmospheric aerosols during the 2003 heat wave in southeastern spain. I: Spectral optical depth; Atmos. Environ. 40 6453–6464.

    Article  Google Scholar 

  • Moorthy K K and Satheesh S K 2000 Characteristics of aerosols over a remote island, Minicoy in the Arabian Sea: Optical properties and retrieved size characteristics; Quart. J. Roy. Meteorol. Soc. 126 81–109.

    Google Scholar 

  • Moorthy K K, Babu S S and Satheesh S K 2003 Aerosol spectral optical depths over the Bay of Bengal: Role of transport; Geophys. Res. Lett. 305 1249, doi:10.1029/2002GL016520.

    Article  Google Scholar 

  • Moorthy K, Babu S and Satheesh S 2005 Aerosol characteristics and radiative impacts over the Arabian Sea during the inter monsoon season: Results from ARMEX field campaign; J. Atmos. Sci. 62 192–206.

    Article  Google Scholar 

  • Nakajima T and Higurashi A 1998 A use of two-channel radiances for an aerosol characterization from space; Geophys. Res. Lett. 25 3815–3818.

    Article  Google Scholar 

  • Ogunjobi K O, He Z and Simmer C 2008 Spectral aerosol optical properties from AERONET Sun-photometric measurements over west Africa; Atmos. Res. 88 89–107.

    Article  Google Scholar 

  • Ping Guo J, Xiao-Ye Zhang, Hui-Zheng Che, Sun-Ling Gong, Xingqin An, Chun-Xiang Cao, JieGuang, Hao Zhang, Ya-Qiang Wang, Xiao-Chun Zhang, Min Xue and Xiao-Wen Li 2009 Correlation between PM concentrations and aerosol optical depth in eastern China; Atmos. Environ. 43 37–51.

  • Polavarapu R J 1978 Atmospheric turbidity over Canada; J. Appl. Meteorol. 17 1368–1374.

    Article  Google Scholar 

  • Rainwater M and Gregory L 2005 www.arm.gov, publications, technical reports, instruments handbook, CIMEL Sun photometer, DOE/SC-ARM/TR-056.

  • Ramanathan V, Crutzen P J and Lelieveld J 2001 Indian Ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze; J. Geophys. Res. Atmos. 106 28,371–28,398.

    Article  Google Scholar 

  • Rapti A S 2000 Atmospheric transparency, atmospheric turbidity and climatic parameters; Sol. Energy 69 99–111.

    Article  Google Scholar 

  • Reid J S, Eck T F, Christopher S A, Hobbs P V and Holben B 1999 Use of the Angstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil; J. Geophys. Res. 104 27,473–27,489.

    Article  Google Scholar 

  • Satheesh S K and Ramanathan V 2000 Large differences in the tropical aerosol forcing at the top of the atmosphere and Earth’s surface; Nature 405 60–63.

    Article  Google Scholar 

  • Satheesh S K and Moorthy K 2005 Radiative effects of natural aerosols: A review; Atmos. Environ. 39 2089–2110.

    Article  Google Scholar 

  • Satheesh S K, Krishna Moorthy K, Kaufman Y J and Takemura T 2006 Aerosol optical depth physical properties and radiative forcing over the Arabian Sea; Meteorol. Atmos. Phys. 91 45–62, doi:10.1007/s00703-004-0097-4.

    Article  Google Scholar 

  • Seinfeld H and Pandis N 1998 Atmospheric chemistry and physics, from air pollution to climate change (New York: John Wiley and Sons), 1191p.

    Google Scholar 

  • Smirnov A, Holben B N, Eck T F, Slutsker I, Chatenet B and Pinker R T 2002 Diurnal variability of aerosol optical depth observed at AERONET (Aerosol Robotic Network) sites; Geophys. Res. Lett. 29 15–21.

    Google Scholar 

  • Smirnov A, Holben B N, Eck T F, Dubovik O and Slutsker I 2000 Cloud screening and quality control algorithms for the AERONET database; Remote Sens. Environ. 73 337–349.

    Article  Google Scholar 

  • Tsai Y I and Cheng M T 1999 Visibility and aerosol chemical compositions near the coastal area in central Taiwan; Sci. Total Environ. 231 37–51.

    Article  Google Scholar 

  • WMO 1994 Report of the WMO workshop on the measurements of atmospheric optical depth and turbidity. World Meteorological Organization Report GAW-101, 13p.

  • Xia X A, Chen H B, Wang P C, Zhang W X, Goloub P, Chatenet B, Eck T and Holben B 2006 Variation of column-integrated aerosol properties in a Chinese urban region; J. Geophys. Res. 111 D05204, doi: 10.1029/2005JD006203.

    Article  Google Scholar 

  • Zakey A S, Abdelwahab M M and Makar P A 2004 Atmospheric turbidity over Egypt; Atmos. Environ. 38 1579–1591.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to greatly thank Professor G Vaughan from the School of Earth, Atmospheric and Environmental Sciences of the University of Manchester for his technical support and revision of this paper. We also acknowledge the support of Iranian Meteorological Organization and Institute for Advanced Studies in Basic Sciences (IASBS) of Zanjan for data acquisition for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Khoshsima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoshsima, M., Bidokhti, A.A. & Ahmadi-Givi, F. Variations of aerosol optical depth and Angstrom parameters at a suburban location in Iran during 2009–2010. J Earth Syst Sci 123, 187–199 (2014). https://doi.org/10.1007/s12040-013-0380-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-013-0380-1

Keywords

Navigation