Skip to main content

Advertisement

Log in

The South India Precambrian crust and shallow lithospheric mantle: Initial results from the India Deep Earth Imaging Experiment (INDEX)

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

We present here the most comprehensive study of the thickness and composition (\(\textit{Vp}/\textit{Vs}\) ratio) of the South India Precambrian crust and the nature of shallower mantle inferred from analysis of teleseismic receiver functions from 70 broad-band seismic stations operated as a part of the India Deep Earth Imaging Experiment (INDEX). South India could be broadly divided into regions with thin crust (32–38 km) and thick crust (38–54 km). Thin crust domains include the East Dharwar Craton (EDC), Cuddapah basin and Madurai/Kerala Khondalite Block. The thicker crust domain includes the Western Dharwar Craton (WDC) and northern part of Southern Granulite Terrain. The WDC shows progressive increase in thickness from 38 km in north to 46–54 km in south, compared to an almost flat Moho beneath the EDC. Compositionally, most of the crustal domains are felsic to intermediate (\(\textit{Vp}/\textit{Vs}\) ~ 1.69–1.75) except the mid Archean block in the southern WDC where it is mafic (\(\textit{Vp}/\textit{Vs}\) > 1.81). Considering erosion depth in the WDC, we argue for Himalaya like ~70 km thick crust beneath it during the Archean. Variation in crustal thickness does not have a first-order influence on regional topography in South India and suggests significant role for the crustal composition. We also present evidence of mid-lithospheric low velocity at ~85–100 km beneath South India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Abt D L, Fischer K M, French S W, Ford H A, Yuan H and Romanowicz B 2010 North America lithospheric discontinuity structure imaged by Ps and Sp receiver functions; J. Geophys. Res. 115 B09301, doi: 10.1029/2009JB006914.

    Article  Google Scholar 

  • Anderson D L 2006 Speculations on the nature and cause of mantle heterogeneity; Tectonophys. 416 7–22.

    Article  Google Scholar 

  • Besse J and Courtillot V 1988 Paleogeographic maps of the continents bordering the Indian Ocean since the Early Jurassic; J. Geophys. Res. 93 11,791–11,808.

    Article  Google Scholar 

  • Bouhallier H, Chardon D and Choukroune P 1995 Strain patterns in Archaean dome-and-basin structures: The Dharwar craton (south India); Earth Planet. Sci. Lett. 135 57–75.

    Article  Google Scholar 

  • Calvert A J, Sawyer E W, Davis W J and Ludden J N 1995 Archean subduction inferred from seismic images of a mantle suture in the Superior Province; Nature 375 670–674.

    Article  Google Scholar 

  • Chadwick B, Vasudev V N and Hedge G V 2000 The Dharwar craton, south India interpreted as the result of late Archaean oblique convergence; Precamb. Res. 99 91–111.

    Article  Google Scholar 

  • Chevrot S and van der Hilst R D 2000 The Poisson ratio of the Australian crust: Geological and geophysical implications; Earth Planet. Sci. Lett. 183 121–132.

    Article  Google Scholar 

  • Christensen N I 1996 Poisson’s ratio and crustal seismology; J. Geophys. Res. 101 3139–3156.

    Article  Google Scholar 

  • Condie K C 2005 Earth as an evolving planetary system (Amsterdam: Elsevier Academic Press), 447p.

    Google Scholar 

  • Connolly J A D and Kerrick D M 2002 Metamorphic controls on seismic velocity of subducted oceanic crust at 100–250 km depth; Earth Planet. Sci. Lett. 204 61–74.

    Article  Google Scholar 

  • Crotwell H P, Owens T J and Ritsema J 1999 The TauP Toolkit: Flexible seismic travel-time and ray-path utilities; Seismol. Res. Lett. 70 154–170.

    Article  Google Scholar 

  • Davies G F 1992 On the emergence of plate tectonics; Geology 20 963–966.

    Article  Google Scholar 

  • de Wit M J, de Ronde C E J, Tredoux M, Roering C, Hart R J, Armstrong R A, Green R W E, Peberdy E and Hart R A 1992 Formation of an Archean continent; Nature 357(6379) 553–562.

  • de Wit M J 1998 On Archean granites, greenstones, cratons, and tectonics: Does the evidence demand a verdict?; Precamb. Res. 91 181–226.

    Article  Google Scholar 

  • Dhuime B, Hawkesworth C J, Cawood P A and Storey C D 2012 A change in the geodynamics of continental growth 3 billion years ago; Science 335 1334–1336, doi: 10.1126/science.1216066.

    Article  Google Scholar 

  • Drury S A, Harris N B, Holt R W, Reeves-Smith G J and Wightman R T 1984 Precambrian tectonics and crustal evolution in south India; J. Geol. 92 3–20.

    Article  Google Scholar 

  • Dueker K G and Sheehan A F 1997 Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track; J. Geophys. Res. 102 8313–8327.

    Article  Google Scholar 

  • Durrheim R J and Mooney W D 1994 Evolution of the Precambrian lithosphere: Seismological and geochemical constraints; J. Geophys. Res. 99 15,359–15,374.

    Article  Google Scholar 

  • Efron B and Tibshirani R 1986 Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy; Stat. Sci. 1 54–77.

    Article  Google Scholar 

  • Fischer K M, Ford H A, Abt D L and Rychert C A 2010 The lithosphere–asthenosphere boundary; Ann. Rev. Earth Planet. Sci. 38 551–575, doi: 10.1146/annurevearth-040809-152438.

    Article  Google Scholar 

  • Ford H A, Fischer K M, Abt D L, Rychert C A and Elkins-Tanton L T 2010 The lithosphere asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging; Earth Planet. Sci. Lett. 300 299–310, doi: 10.1016/j.epsl.2010.10.007.

    Article  Google Scholar 

  • Gao S, Zhang B R, Jin Z M, Kern H, Luo T C and Zhao Z D 1998 How mafic is the lower continental crust?; Earth Planet. Sci. Lett. 161 101–117.

    Article  Google Scholar 

  • Gaur V K and Priestley K F 1996 Shear wave velocity structure beneath the Archaean granites around Hyderabad inferred from receiver function analysis; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 105 1–8.

    Google Scholar 

  • Gubbins D, Barnicoat A and Cann J 1994 Seismological constraints on the gabbro-eclogite transition in subducted oceanic crust; Earth Planet. Sci. Lett. 122 89–101.

    Article  Google Scholar 

  • Gupta S, Rai S S, Prakasam K S, Srinagesh D, Bansal B K, Chadha R K, Pristley K and Gaur V K 2003a The nature of the crust in southern India: Implication for Precambrian crustal evaluation; Geophys. Res. Lett. 30 1419, doi: 10.1029/2002GL016770.

  • Gupta S, Rai S S, Prakasam K S, Srinagesh D, Chadha R K, Prisetley K and Gaur V K 2003b First evidence for anomalous thick crust beneath mid-Archean western Dharwar craton; Curr. Sci. 84 1219–1226.

    Google Scholar 

  • Gurrola R W, Minster J B and Owens T 1994 The use of velocity spectrum for stacking receiver functions and imaging upper mantle discontinuities; Geophys. J. Int. 117 427–440.

    Article  Google Scholar 

  • Hawkesworth C J and Kemp A I S 2006 Evolution of the continental crust; Nature 443 811–817.

    Article  Google Scholar 

  • Jagadeesh S and Rai S S 2008 Thickness, composition and evolution of the Indian Precambrian crust; Precamb. Res. 162 4–15.

    Article  Google Scholar 

  • Jarchow C M and Thompson G A 1989 The nature of the Mohorovicic discontinuity; Ann. Rev. Earth Planet. Sci. 17 475–506.

    Article  Google Scholar 

  • Julia J, Jagadeesh S, Rai S S and Owens T J 2009 Deep crustal structure of the Indian Shield from joint inversion of P-wave receiver functions and Rayleigh-wave group velocities: Implications for Precambrian evolution; J. Geophys. Res. 114 B10313, doi: 10.1029/2008JB006261.

  • Kaila K L and Krishna V G 1992 Deep seismic sounding studies in India and major discoveries, In: Seismology in India – An overview (eds) Gupta H K and Ramaseshan S, Curr. Sci. (Spec. Issue) 62 117–154.

  • Kennett B and Engdahl E 1991 Travel times for global earthquake location and phase identification; Geophys. J. Int. 105 429–465.

    Article  Google Scholar 

  • Kiselev S, Vinnik L, Oreshin S, Gupta S, Rai S S, Singh A, Kumar M R and Mohan G 2008 Lithosphere of the Dharwar craton by joint inversion of P and S receiver functions; Geophys. J. Int. 173(3) 1106–1118.

    Article  Google Scholar 

  • Kumar N, Singh A P and Singh B 2011 Insights into the crustal structure and geodynamic evolution of the southern granulite terrain, India, from isostatic considerations; Pure Appl. Geophys. 168 1781–1798.

    Article  Google Scholar 

  • Kumar P, Yuan X H, Kumar M R, Kind R, Li X Q and Chadha R K 2007 The rapid drift of the Indian tectonic plate; Nature 449 894–897.

    Article  Google Scholar 

  • Ligorria J P and Ammon C J 1999 Iterative deconvolution and receiver-function estimation; Bull. Seismol. Soc. Am. 358 233–265.

    Google Scholar 

  • Meen J K, Roger J J W and Fullargar P D 1992 Lead isotopic compositions of the Western Dharwar Craton, south India: Evidence for distinct middle Archaean terranes in a late Archaean craton; Geochim. Cosmochim. Acta 56 2455–2470.

    Article  Google Scholar 

  • Meissner R 1986 The Continental Crust: A Geophysical Approach; International Geophysics Series, vol. 34, Academic Press.

  • Miller M S and Eaton D W 2010 Formation of cratonic mantle keels by arc accretion: Evidence from S receiver function; Geophys. Res. Lett. 37 L18305, doi: 10.1029/2010GL044366.

    Google Scholar 

  • Mitra S, Pristley K, Gaur V K and Rai S S 2006 Shear wave velocity structure of the south Indian lithosphere from Rayleigh wave phase velocity measurements; Bull. Seismol. Soc. Am. 96 1551–1559.

    Article  Google Scholar 

  • Nagel T J, Hoffman J E and Munker C 2012 Generation of EoArchean tonalite-trondhjemite-grandiorite series from thickened mafic arc crust; Geology 40 375–378, doi: 10.1130/G32729.1.

    Article  Google Scholar 

  • Nair S K, Gao S S, Liu K H and Silver P G 2006 South African crustal evolution and composition: Constraints from receiver function studies; J. Geophys. Res. 111 B02304, doi: 10.1029/2005JB003802.

  • Naqvi S M and Rogers J J W 1996 Precambrian Geology of India, Clarendon Press, New York.

    Google Scholar 

  • Nguuri T K, Gore J, James D E, Webb S J, Wright C, Zengeni T G, Gwavava O and Snoke A 2001 Crustal structure beneath southern Africa and its implications for the formation and evolution of Kaapval and Zimbabwe craton; Geophys. Res. Lett. 28 2501–2504.

    Article  Google Scholar 

  • Nelson K D 1991 A unified view of craton evolution motivated by recent deep seismic reflection and refraction results; Geophys. J. Int. 105 25–35.

    Article  Google Scholar 

  • Peucat J J, Bouhallier H, Fanning C M and Jayananda M 1995 Age of the Holenarsipur greenstone belt, relationship with surrounding gneisses (Karnataka, south India); J. Geol. 103 701–710.

    Article  Google Scholar 

  • Rai A, Gaur V K, Rai S S and Priestley K 2008 Seismic signatures of the Pan-African orogeny: Implication for southern Indian high-grade terranes; Geophys. J. Int. 176 518–528.

    Article  Google Scholar 

  • Rai S S, Priestley K, Prakasam K S, Srinagesh D, Gaur V K and Du Z 2003 Crustal shear velocity structure of the south Indian shield; J. Geophys. Res. 108(B2) 2088, doi: 1029/2002JB001776.

  • Raith M, Raase P, Ackermand D and Lal R K 1983 Regional geothermal-barometry in the granulite facies terrane of South India; Contrib. Mineral. Petrol. 73 221–244.

    Google Scholar 

  • Raith M, Karmakar S and Brown M 1997 Ultra high temparature metamorphism and multi-stage decompressional of saphirrine granulite from the Palni-Hill ranges, southern India; J. Metamorph. Geol. 15 379–399.

    Article  Google Scholar 

  • Replumaz A, Karasan H, Van der Hilst R D, Besse J and Tapponnier P 2004 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography; Earth Planet. Sci. Lett. 221 103–115.

    Article  Google Scholar 

  • Rudnick R L 1995 Making continental crust; Nature 378 571–578.

    Article  Google Scholar 

  • Rudnick R L and Fountain D M 1995 Nature and composition of the continental crust: A lower crustal perspective; Rev. Geophys. 33 267–309.

    Article  Google Scholar 

  • Rudnick R L and Gao S 2003 Composition of the continental crust; In: Treatise on Geochemistry 3 1–64.

  • Santosh M, Maruyama S and Sato K 2009 Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India?; Gondwana Res. 16 321–341.

    Article  Google Scholar 

  • Sarkar D, Chandrakala K, Padmavathi Devi P, Sridhar A R, Sain K and Reddy P R 2001 Crustal velocity structure of western Dharwar craton, south India; J. Geodyn. 31 227–241.

    Article  Google Scholar 

  • Sarkar D, Kumar M R, Saul J, Kind R, Raju P S, Chadha R K and Shukla A K 2003 A receiver function perspective of Dharwar craton (India) crustal structure; Geophys. J. Int. 154 205–211.

    Article  Google Scholar 

  • Savage B and Silver P G 2008 Evidence for a compositional boundary within the lithospheric mantle beneath the Kalahari craton from S receiver functions; Earth Planet. Sci. Lett. 272 600–609, doi: 10.1016/j.epsl.2008.05.026.

    Article  Google Scholar 

  • Spasojevic S, Gurnis M and Sutherland R 2010 Mantle upwellings above slab graveyards linked to the global geoid lows; Nature Geosci. 3 435–438, doi: 10.10308/NGEO855.

    Article  Google Scholar 

  • Taylor P N, Moorbath S, Chadwick B, Ramakrishna M and Viswanatha M N 1984 Petrography, chemistry and isotropic ages of peninsular gneisses, Dharwar acid volcanic; Precamb. Res. 23 349–375.

    Article  Google Scholar 

  • Thompson D A, Bastow I D, Helffrich G, Kendall J M, Wookey J, Snyder D B and Eaton D W 2010 Precambrian crustal evolution: Seismic constraints from the Canadian Shield; Earth Planet. Sci. Lett. 297 655–666.

    Article  Google Scholar 

  • Thybo H and Perchuc E 1997 The seismic 8° discontinuity and partial melting in continental mantle; Science 275 1626–1629.

    Google Scholar 

  • Tugume F, Nyblade A and Julia J 2012 Moho depths and Poisson’s ratios of Precambrian crust in East Africa: Evidence for similarities in Archean and Proterozoic crustal structure; Earth Planet. Sci. Lett. 73–81 355–366.

    Google Scholar 

  • van der Hilst R 2004 Changing views on the earth’s deep mantle; Science 306 817–818.

    Article  Google Scholar 

  • van Kranendonk M J 2011 Onset of plate tectonics; Science 333 413–414.

    Article  Google Scholar 

  • White D J, Musacchio G, Helmstaedt H H, Harrap R M, Thurston P C, van der Velden A and Hall K 2003 Images of lower crustal oceanic slab: Direct evidence for tectonic accretion in the Archean western Superior province; Geology 31 997–1000.

    Google Scholar 

  • Wessel P and Smith W H F 1998 New, improved version of the Generic Mapping Tools released; EOS Trans. AGU 79 579.

    Article  Google Scholar 

  • Wolbern I, Rumpker G, Link K and Sodoudi F 2012 Melt infiltration of the lower lithosphere beneath the Tanzania craton and the Albertine rift inferred from S receiver functions; Geochem. Geophys. Geosyst. 13 Q0AK08, doi: 10.1029/2012GC004167.

  • Zandt G and Ammon C J 1995 Continental crust composition constrained by measurements of crustal Poisson’s ratio; Nature 374 152–154.

    Article  Google Scholar 

  • Zegers T and van Keken P E 2001 Middle Archean continent formation by crustal delamination; Geology 29(12) 1083–1086.

    Article  Google Scholar 

  • Zhu L and Kanamori H 2000 Moho depth variation in southern California from teleseismic receiver functions; J. Geophys. Res. 105 2969–2980.

    Article  Google Scholar 

Download references

Acknowledgements

Seismological field experiment was supported by the INDEX Research project of the CSIR–NGRI. This study is a part of the PhD dissertation of KB. He was supported by a research fellowship from CSIR. SSR was supported by JC Bose National Fellowship of the Dept. of Science and Technology, New Delhi. The authors greatly appreciate help of P Mahesh, V Pavan Kumar, Utpal Saikia, Somasish Bose, K Nagaraju and Gyan Singh Meena during the field deployment of seismographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S S RAI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

RAI, S.S., BORAH, K., DAS, R. et al. The South India Precambrian crust and shallow lithospheric mantle: Initial results from the India Deep Earth Imaging Experiment (INDEX). J Earth Syst Sci 122, 1435–1453 (2013). https://doi.org/10.1007/s12040-013-0357-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-013-0357-0

Keywords

Navigation