Skip to main content
Log in

Fluvial trace fossils in the Middle Siwalik (Sarmatian-Pontian) of Darjeeling Himalayas, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Trace fossils that record animal and plant activity are described for the first time from the Middle Siwalik, Neogene deposits of Darjeeling Himalaya. Sedimentary facies association attests to a channel–interchannel floodplain fluviatile setting. The intimate association of the burrows with phytoliths, rhizoliths, leaf compressions and coal lenses suggest that the tracemakers dominated a floodplain habitat. Point bar deposits host a low diversity Planolites-Naktodemasis-Macanopsis-Cylindricum equilibrium ichnocoenosis in the heterolithic fine sandstone-siltstone-shale facies that alternates with dense, monospecific colonization of Planolites as opportunistic pioneers relocating under stressed condition. Interlayered floodplain deposits in the fluvial successions preserve enigmatic large diameter, vertical tubes within thin to thick-bedded, dark silty shale facies. These tubes bear mixed characters assignable to both crayfish burrows and large-diameter rhizoliths. Further work on these tubes is necessary to make more accurate interpretations of those structures. Shallow to moderate burrow depths; intermittent, short-lived colonization events and preservation of rhizoliths and rhizohalos under fluctuating moisture content indicate short-term fluctuations of a relatively high water table (close to the paleosurface) in an imperfectly drained proximal floodplain setting. Ichnotaxa distribution and their inferred ethology provide significant faunal data that may put constraints on the reconstruction of Middle Siwalik depositional environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Acharyya S K, Dutta A K and Sastry M V A 1976 Siwalik stratigraphy and its bearing on the main boundary fault; Geol. Surv. India Misc. Publ. 41 67–79.

    Google Scholar 

  • Agarwal S C and Singh I B 1983 Palaeoenvironment and trace fossils of the Middle Siwalik sediments, Haridwar, Uttar Pradesh; J. Palaeontol. Soc. India 28 50–55.

    Google Scholar 

  • Banerjee I and Banerjee S 1982 A coalescing alluvial fan model of Siwalik sedimentation: A case study in eastern Himalaya; Geol. Surv. India Misc. Publ. 41 1–12.

    Google Scholar 

  • Bigham J M, Golden D C, Buol S W, Weed S B and Bowen L H 1978 Iron oxide mineralogy of well-drained ultisols and oxisols: Pt. 2. Influence on color, surface area and phosphate retention; Soil Sci. Soc. Am. J. 42 825–830.

    Article  Google Scholar 

  • Bown T M 1982 Ichnofossils and rhizoliths of the nearshore fluvial Jebel Qatrani Formation (Oligocene), Fayum Province, Egypt; Palaeogeogr. Palaeoclimatol. Palaeoecol. 40 255–309.

    Article  Google Scholar 

  • Bown T M and Kraus M J 1983 Ichnofossils of the alluvial Willwood Formation (Lower Eocene), Bighorn Basin, Northwestern Wyoming, USA; Palaeogeogr. Palaeoclimatol. Palaeoecol. 43 95–128.

    Article  Google Scholar 

  • Bromley R G 1990 Trace fossils: Biology and taphonomy; Special Topics in Palaeontology (London: Unwin Hyman) 3 280p.

  • Bromley R and Asgaard U 1979 Triassic freshwater ichnocoenoses from Carisberg Fjord, East Greenland; Palaeogeogr. Palaeoclimatol. Palaeoecol. 28 39–80.

    Article  Google Scholar 

  • Bromley R G 1996 Trace fossils: Biology taphonomy and application; 2nd edn, Chapman and Hall, 361p.

  • Chaudhri R S 1972 Heavy minerals from the Siwalik formations of northwestern Himalayas; Sedim. Geol. 8 77–82. http://resolver.scholarsportal.info/resolve/doi/10.1016/0037-0738(72)90042-5.

  • Counts J W and Hasiotis S T 2009 Neoichnological experiments documenting burrowing behaviors and traces of the masked chafer beetle (Coleoptera: Scarabaeidae: Cyclocephala sp.): Behavioral significance of extant soil-dwelling insects to understanding backfilled trace fossils in the continental realm; Palaios 24 74–91.

    Article  Google Scholar 

  • Dubiel R F and Hasiotis S T 2011 Deposystems, paleosols and climatic variability in a continental system: The Upper Triassic Chinle Formation, Colorado Plateau, USA; In: From river to rock record: The preservation of fluvial sediments and their subsequent interpretation (eds) Davidson S and North C; SEPM Spec. Publ. 97 393–421.

  • Dubiel R F, Skipp G and Hasiotis S T 1992 Continental depositional environments and tropical paleosols in the Upper Triassic Chinle Formation, Eagle Basin, Western Colorado; In: Mesozoic of the western interior (ed.) Flores R M, Field Guide Book, USA, pp. 21–37.

  • Ekdale A A 1985 Paleoecology of the marine endobenthos; Palaeogeogr. Palaeoclimatol. Palaeoecol. 50 63–81.

    Article  Google Scholar 

  • Fernandes A C S and Carvalho I D 2006 Invertebrate ichnofossils from the adamantina formation (Bauru basin, late cretaceous), Brazil; Rev. Bras. Paleontol. 9 211–220.

    Article  Google Scholar 

  • Gansser A 1964 Geology of the Himalaya (New York, USA: Interscience Publishers), 289p.

    Google Scholar 

  • Glinski J and Lipiec J 1990 Soil physical conditions and plant roots (Boca Raton, Florida: CRC Press), 250p.

    Google Scholar 

  • Häntzschel W 1975 Trace fossils and problematica; In: Treatise on invertebrate paleontology Pt. W Miscellanea (ed.) Teichert C, Geological Society of America and University of Kansas Press, Boulder, Colorado, Lawrence, Kansas, pp. W1–W269.

  • Hasiotis S T 1990 Identification of the architectural and surficial burrow morphologies of ancient lungfish and crayfish burrows: Their importance to ichnology; In: Proceedings, Pacific Rim 90 Congress, Australia, pp. 529–536.

  • Hasiotis S T 2002 Continental Trace Fossils; Society for Sedimentary Geology, Tulsa, Oklahoma, 134p.

  • Hasiotis S T 2004 Reconnaissance of upper jurassic morrison formation ichnofossils, Rocky Mountain Region, USA: Paleoenvironmental, stratigraphic and paleoclimatic significance of terrestrial and freshwater ichnocoenoses; Sedim. Geol. 167 177–268.

    Article  Google Scholar 

  • Hasiotis S T 2007 Continental ichnology: Fundamental processes and controls on trace fossil distribution; In: Trace fossils: Concepts, problems, prospects (ed.) Miller W (Amsterdam: Elsevier), pp. 262–278.

    Google Scholar 

  • Hasiotis S T 2008 Reply to the comments by Bromley et al. of the paper “Reconnaissance of the upper Jurassic Morrison formation ichnofossils, rocky mountain region, USA: Paleoenvironmental, stratigraphic and paleoclimatic significance of terrestrial and freshwater ichnocoenoses”; Sedim. Geol. 208 61–68.

    Article  Google Scholar 

  • Hasiotis S T and Dubiel R F 1994 Ichnofossil tiering in Triassic alluvial paleosols: Implications for Pangean continental rocks and paleoclimate; In: Pangea: Global environments and resources (eds) Beauchamp B, Embry A F and Glass D; Canadian Society of Petroleum Geologists 17 311–317.

  • Hasiotis S T and Honey J 2000 Paleocene continental deposits and crayfish burrows of the laramide basins in the Rocky Mountains: Paleohydrologic and stratigraphic significance; J. Sediment. Res. 70 127–139.

    Article  Google Scholar 

  • Hasiotis S T and Mitchell C E 1993 A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo- and neo-ichnological evidence and the identification of their burrowing signatures; Ichnos 2 291–314.

    Article  Google Scholar 

  • Hasiotis S T, Aslan A and Bown T M 1993 Origin, architecture and paleoecology of the Early Eocene continental ichnofossil Scaphichnium hamatum, integration of ichnology and paleopedology; Ichnos 3 1–9.

    Article  Google Scholar 

  • Hobbs H H 1974 Synopsis of the families and genera of crayfishes (Crustacea: Decapoda); Smithsonian Contrib. Zool. 164 1–32.

    Google Scholar 

  • Hobbs H H 1988 Crayfish distribution, adaptive radiation and evolution; In: Freshwater crayfish: Biology, management and exploitation (eds) Holdich D M and Lowery R S, Croom Helm, London, pp. 52–82.

  • Jain V and Sinha R 2003 River systems in the gangetic plains and their comparison with the Siwaliks: A review; Curr. Sci. 84 1025–1033. http://home.iitk.ac.in/~rsinha/Publications.htm.

    Google Scholar 

  • Johnson G D, Opdyke N D, Tandon S K and Nanda A C 1983 The magnetic polarity stratigraphy of the Siwalik group at Haritalyangar (India) and a new last appearance datum for Ramapithecus and Sivapithecus in Asia; Palaeogeogr. Palaeoclimatol. Palaeoecol. 44 223–249.

    Article  Google Scholar 

  • Keighley D G and Pickerill R K 2003 Ichnocoenoses from the carboniferous of eastern Canada and their implications for the recognition of ichnofacies in nonmarine strata; Atlantic Geology 39 1–22. http://www.colorado.edu/GeolSci/faculty/pdf/Kraus_Hasiotis_2006.pdf.

  • Kraus M J and Hasiotis S T 2006 Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: Examples from Paleogene paleosols, Bighorn Basin, Wyoming, USA; J. Sedim. Res. 76 633–646.

    Article  Google Scholar 

  • Kumar R, Sangode S J and Ghosh S K 2004 A multistorey sandstone complex in the Himalayan Foreland Basin, NW Himalaya, India; J. Asian Earth Sci. 23 407–426.

    Article  Google Scholar 

  • Kundu A, Matin A and Mukul M 2012 Depositional environment and provenance of Middle Siwalik sediments in Tista valley, Darjiling District, Eastern Himalaya, India; J. Earth Syst. Sci. 121(1) 73–89.

    Article  Google Scholar 

  • Mallet F R 1875 On the geology and mineral resources of the Darjiling District and the Western Duars; Geol. Surv. India Memoir 11 1–50.

    Google Scholar 

  • Ortmann A E 1906 The crawfishes of the state of Pennsylvania; Mem. Carnegie Mus. 2 343–521.

    Google Scholar 

  • Pollard J E 1988 Trace fossils in coal-bearing sequences; J. Geol. Soc. 145 339–350.

    Article  Google Scholar 

  • Raju A T R 1969 Observation on the petrography of clastic sediments of Himalayan foothills of North India; ONGC Bull. 4 5–15.

    Google Scholar 

  • Ratcliffe B C and Fagerstrom J A 1980 Invertebrate lebensspuren of holocene floodplains: Their morphology, origin and paleoecological significance; J. Paleontol. 54 614–630. http://digitalcommons.unl.edu/entomologypapers/136.

    Google Scholar 

  • Sanyal P, Bhattacharya S K, Kumar R, Ghosh S K and Sangode S J 2005 Palaeovegetational reconstruction in late miocene: A case study based on early diagenetic carbonate cement from the Indian Siwalik; Palaeogeogr. Palaeoclimatol. Palaeoecol. 228 245–259.

    Article  Google Scholar 

  • Schwertmann U 1993 Relations between iron oxides, soil color and soil formation; J. Soil Sci. 31 51–69.

    Google Scholar 

  • Seilacher A 1964 Biogenic sedimentary structures; In: Approaches to Paleoecology (eds) Imbrie J and Newell N (New York: Wiley), pp. 296–316.

    Google Scholar 

  • Smith J J and Hasiotis S T 2008 Traces and burrowing behaviors of the cicada nymph Cicadetta calliope: Neoichnology and paleoecological significance of extant soil-dwelling insects; Palaios 23 503–513.

    Article  Google Scholar 

  • Smith J J, Hasiotis S T, Kraus M J and Woody D T 2008a Naktodemasis bowni: New ichnogenus and ichnospecies for adhesive meniscate burrows (amb) and paleoenvironmental implications, paleogene Willwood formation, Bighorn basin, Wyoming; J. Paleontol. 82 267–278.

    Article  Google Scholar 

  • Smith J J, Hasiotis S T, Kraus M J and Woody D T 2008b Relationship of floodplain ichnocoenoses to paleopedology, paleohydrology and paleoclimate in the Willwood Formation, Wyoming, during the paleocene–eocene thermal maximum; Palaios 23 683–699.

    Article  Google Scholar 

  • Stanley K O and Fagerstrom J A 1974 Miocene invertebrate trace fossils from a braided river environment, western Nebraska, USA; Palaeogeogr. Palaeoclimatol. Palaeoecol. 15 63–82.

    Article  Google Scholar 

  • Tandon S K and Naug B 1984 Facies–trace fossil relationships in a plio–pleistocene fluvial sequence, the upper Siwalik subgroup, Punjab sub-Himalaya, India; Palaeogeogr. Palaeoclimatol. Palaeoecol. 47 277–299.

    Article  Google Scholar 

  • Taylor A, Goldring R and Gowland S 2003 Analysis and application of ichnofabric; Earth Sci. Rev. 60 227–259.

    Article  Google Scholar 

  • Torrent J, Schwertmann U and Schulze D G 1980 Iron oxide mineralogy of some soils of two river terrace sequences in Spain; Geoderma 23 191–208.

    Article  Google Scholar 

  • Vaidyanadhan R and Ramakrishnan M 2008 Geology of India; 2nd edn, Geological Society of India, Bangalore, 994p.

    Google Scholar 

  • Valdiya K S 1998 Dynamic Himalaya; University Press, India, 178p.

    Google Scholar 

  • Vossler S M and Pemberton S G 1988 Skolithos in the upper cretaceous cardium formation: An ichnofossil example of opportunistic ecology; Lethaia 21(4) 351–362.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to anonymous reviewers for their meticulous review and improvement suggestions. Heart-felt thanks to Prof. Nibir Mandal, Associate Editor, JESS for his helpful suggestions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ABHIJIT CHAKRABORTY.

Rights and permissions

Reprints and permissions

About this article

Cite this article

CHAKRABORTY, A., HASIOTIS, S.T., GHOSH, B. et al. Fluvial trace fossils in the Middle Siwalik (Sarmatian-Pontian) of Darjeeling Himalayas, India. J Earth Syst Sci 122, 1023–1033 (2013). https://doi.org/10.1007/s12040-013-0324-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-013-0324-9

Keywords

Navigation