Skip to main content
Log in

Comparison of CloudSat and TRMM radar reflectivities

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Comparison of reflectivity data of radars onboard CloudSat and TRMM is performed using coincident overpasses. The contoured frequency by altitude diagrams (CFADs) are constructed for two cases: (a) only include collocated vertical profiles that are most likely to be raining and (b) include all collocated profiles along with cloudy pixels falling within a distance of about 50 km from the centre point of coincidence. Our analysis shows that for both cases, CloudSat underestimates the radar reflectivity by about 10 dBZ compared to that of TRMM radar below 15 km altitude. The difference is well outside the uncertainty value of ~2 dBZ of each radar. Further, CloudSat reflectivity shows a decreasing trend while that of TRMM radar an increasing trend below 4 km height. Basically W-band radar that CloudSat flies suffers strong attenuation in precipitating clouds and its reflectivity value rarely exceeds 20 dBZ though its technical specification indicates the upper measurement limit to be 40 dBZ. TRMM radar, on the other hand, cannot measure values below 17 dBZ. In fact combining data from these two radars seems to give a better overall spatial structure of convective clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adeyewa Z D and Nakamura K 2003 Validation of TRMM radar rainfall data over major climatic regions in Africa; J. Appl. Meteorol. 42 331–347.

    Article  Google Scholar 

  • Barker H W, Korolev A V, Hudak D R, Strapp J W, Strawbridge K B and Wolde M 2008 A comparison between CloudSat and aircraft data for a multilayer, mixed phase cloud system during the Canadian CloudSat-CALIPSO Validation Project; J. Geophys. Res. 113 D00A16, doi: 10.1029/2008JD009971.

    Article  Google Scholar 

  • Behrangi A, Kuber T and Lambrigtsen B 2012 Phenomenological description of tropical clouds using CloudSat cloud classification; Mon. Weather Rev. 140 3235–3249.

    Article  Google Scholar 

  • Carty H M and Kuo K S 2008 A report: 2D-CloudSat-TRMM product description version 1.0; CloudSat Project, A NASA Earth system pathfinder mission.

  • Casey S P F, Dessler A E and Schumacher C 2007 Frequency of tropical precipitating clouds as observed by the Tropical Rainfall Measuring Mission precipitation radar and ICESat/Geoscience laser altimeter system; J. Geophys. Res. 112 D14215, doi: 10.1029/2007JD008468.

    Article  Google Scholar 

  • Casey S P F, Fetzer E J and Kahn B H 2012 Revised identification of tropical oceanic cumulus congestus as viewed by CloudSat; Atmos. Chem. Phys. 12 1587–1595.

    Article  Google Scholar 

  • Cetrone J and Houze Jr R A 2009 Anvil clouds of tropical mesoscale convective systems in monsoon regions; Quart. J. Roy. Meteorol. Soc. 135 305–317.

    Article  Google Scholar 

  • Charney J G 1969 The intertropical convergence zone and the Hadley circulation of the atmosphere; Proc. WMO/IUGG Symposium on Numerical Weather Prediction, Tokyo, Japan, pp. III-73–79.

  • CIMO 2008 Guide to Meteorological Instruments and Methods of Observation; Secretariat of the WMO. Part II Observing methods. WMO No. 8, 7th edn, pp. II.9-6–12.

  • Cotton W R and Anthes R A 1989 Storm and cloud dynamics; Chapter 6, Academic Press, New York, p. 882.

    Google Scholar 

  • Diner D J, Beckert J C, Reilly T H, Bruegge C J, Conel J E, Kahn R A, Martonchik J V, Ackerman T P, Davies R, Gerstl S A W, Gordon H R, Muller J P, Myneni R B, Sellers P J, Pinty B and Verstraete M M 1998 Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview; IEEE Trans. Geosci. Remote Sens. 36 1072–1087.

    Article  Google Scholar 

  • Dinku T, Ruiz F, Connor S J and Ceccato P 2010 Validation and intercomparison of satellite rainfall estimates over Colombia; J. Appl. Meteorol. Climatol. 49 1004–1014.

    Article  Google Scholar 

  • Franchito S H, Rao V B, Vasques A C, Santo C M E and Conforte J C 2009 Validation of TRMM precipitation radar monthly rainfall estimates over Brazil; J. Geophys. Res. 114 D02105, doi: 10.1029/2007JD009580.

    Article  Google Scholar 

  • Gorgucci E and Chandrasekar V 2005 Evaluation of attenuation correction methodology for dual-polarization radars: Application to X-Band systems; J. Atmos. Ocean. Tech. 22 1195–1206.

    Article  Google Scholar 

  • Gourley J J, Hong Y, Flmaig Z L, Li L and Wang J 2010 Intercomparison of rainfall estimates from radar, satellite, gauge, and combinations for a season of record rainfall; J. Appl. Meteorol. Climatol. 49 437–452.

    Article  Google Scholar 

  • Haynes J M and Stephens G L 2007 Tropical oceanic cloudiness and the incidence of precipitation early results from CloudSat; Geophys. Res. Lett. 34 L09811, doi: 10.1029/2007GL029335.

    Article  Google Scholar 

  • Hence D A and Houze Jr R A 2011 Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM precipitation radar; J. Atmos. Sci. 69 1021–1036.

    Article  Google Scholar 

  • Holton J R 2004 An introduction to dynamic meteorology; Chapter 11; 4th edn, Elsevier Academic Press, New York, p. 531.

    Google Scholar 

  • Houze Jr R A 1993 Cloud Dynamics. Academic Press, San Diego, pp. 112–114.

    Google Scholar 

  • Hudak D, Rodriguez P and Donaldson N 2008 Validation of the CloudSat precipitation occurrence algorithm using the Canadian C-band radar network; J. Geophys. Res. 113, D00A07, doi: 10.1029/2008JD009992.

    Article  Google Scholar 

  • Iguchi T and Meneghini R 1994 Intercomparison of single frequency methods for retrieving a vertical rain profile from airborne or space borne data; J. Atmos. Ocean. Tech. 11 1507–1516.

    Article  Google Scholar 

  • Kawanishi T, Kuroiwa H, Kojima M, Oikawa K, Kozu T, Kumagai H, Okamoto K, Okumura M, Nakatsuka H and Nishikawa K 2000 TRMM Precipitation Radar; Adv. Spac. Res. 25 969–972.

    Article  Google Scholar 

  • Kerr R A 2009 Clouds appear to be big, bad player in global warming; Science 325 376.

    Article  Google Scholar 

  • Kim S W, Chung E S, Yoon S C, Sohn B J and Sugimoto N 2011 Intercomparisons of cloud-top and cloud-base heights from ground-based Lidar, CloudSat and CALIPSO measurements; Int. J. Rem. Sens. 32 1179–1197.

    Article  Google Scholar 

  • King M D, Kaufman Y J, Menzel W P and Tanré D 1992 Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS); IEEE Trans. Geosci. Rem. Sens. 30 2–27.

    Article  Google Scholar 

  • Kollias P, Clothiaux E E, Miller M A, Albrecht B A, Stephens G L and Ackerman T P 2007 Millimeter-Wavelength Radars: New frontier in atmospheric cloud and precipitation research; Bull. Am. Meteorol. Soc. 88 1608–1624.

    Article  Google Scholar 

  • Kummerow C, Barnes W, Kozu T, Shiue J and Simpson J 1998 The tropical rainfall measuring mission (TRMM) sensor package; J. Atmos. Ocean. Tech. 15 809–817.

    Article  Google Scholar 

  • Kummerow C, Simpson J, Thiele O, Barnes W, Chang A T C, Stocker E, Adler R F, Hou A, Kakar R, Wentz F, Ashcroft P, Kozu T, Hong Y, Okamoto K, Iguchi T, Kuroiwa H, Im E, Haddad Z, Huffman G, Ferrier B, Olson W S, Zipser E, Smith E A, Wilheit T T, North G, Krishnamurti T N and Nakamura K 2000 The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit; J. Appl. Meteorol. 39 1965–1982.

    Article  Google Scholar 

  • Li W and Schumacher C 2011 Thick anvils as viewed by the TRMM precipitation radar; J. Climate 24 1718–1735.

    Article  Google Scholar 

  • Liu C and Zipser E J 2008 Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations; Geophys. Res. Lett. 35 L04819, doi: 10.1029/2007GL032437.

    Article  Google Scholar 

  • Luo Z, Liu G Y and Stephens G L 2008 CloudSat adding new insight into tropical penetrating convection; Geophys. Res. Lett. 35 L19819, doi: 10.1029/2008GL035330.

    Article  Google Scholar 

  • Mace G G, Marchand R, Zhang Q and Stephens G L 2007 Global hydrometeor occurrence as observed by CloudSat initial observations from summer 2006; Geophys. Res. Lett. 34 L09808, doi: 10.1029/2006GL029017.

    Article  Google Scholar 

  • Marchand R T, Mace G, Ackerman T and Stephens G L 2008 Hydrometeor detection using CloudSat – an earth orbiting 94 GHz cloud radar; J. Atmos. Ocean. Tech. 25 519–533.

    Article  Google Scholar 

  • Masunga H and Kummerow C D 2006 Observations of tropical precipitating clouds ranging from shallow to deep convective systems; Geophys. Res. Lett. 33 L16805, doi: 10.1029/2006GL026547.

    Article  Google Scholar 

  • Nair S, Srinivasan G and Nemani R 2009 Evaluation of multi-satellite TRMM derived rainfall estimates over a western state of India; J. Meteorol. Soc. Japan 87 927–939.

    Article  Google Scholar 

  • Nicholson S E, Some B, Mccollum J, Nelkin E, Klotter D, Berte Y, Diallo B M, Gaye I, Kpabeba G, Ndiaye O, Noukpozounkou J N, Tanu M M, Thiam A, Toure A A and Traore A K 2003a Validation of TRMM and other rainfall estimates with a high-density gauge dataset for west Africa. Part I: Validation of GPCC rainfall product and pre-TRMM satellite and blended products; J. Appl. Meteorol. 42 1337–1354.

    Article  Google Scholar 

  • Nicholson S E, Some B, Mccollum J, Nelkin E, Klotter D, Berte Y, Diallo B M, Gaye I, Kpabeba G, Ndiaye O, Noukpozounkou J N, Tanu M M, Thiam A, Toure A A and Traore A K 2003b Validation of TRMM and other rainfall estimates with a high-density gauge dataset for west Africa. Part II: Validation of TRMM rainfall products; J. Appl. Meteorol. 42 1355–1368.

    Article  Google Scholar 

  • Protat A, Bouniol D, O’Connor E J, Baltink H K, Verlinde J and Widener K 2011 CloudSat as a global calibrator; J. Atmos. Ocean. Tech. 28 445–452.

    Article  Google Scholar 

  • Rajeevan M, Rohni P, Kumar K N, Srinivasan J and Unnikrishnan C K 2012 A study of vertical cloud structure of the Indian summer monsoon using CloudSat data; Clim. Dynam. 40 637–650.

    Article  Google Scholar 

  • Randall D, Wood R, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer R, Sumi A and Tayler K 2007 Climate models and their evaluation; In: Climate Change 2007: The Scientific Basis. Contribution of working group I to the Forth Assessment Report of the Inter-governmental Panel on Climate Change (eds) Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M and Miller H L, Cambridge Univ. Press, Cambridge, United Kingdom, pp. 589–662.

    Google Scholar 

  • Schmetz J, Pili P, Tjemkes S, Just D, Kerkmann J, Rota S and Ratier A 2002 An introduction to Meteosat second generation (MSG); Bull. Am. Meteorol. Soc. 83 977–992.

    Article  Google Scholar 

  • Schumacher C and Houze Jr R A 2000 Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site; J. Appl. Meteorol. 39 2151–2164.

    Article  Google Scholar 

  • Schumacher C and Houze Jr R A 2006 Stratiform precipitation production over sub-Saharan Africa and the tropical East Atlantic as observed by TRMM; Quart. J. Roy. Meteorol. Soc. 132 2235–2255.

    Article  Google Scholar 

  • Steiner M and Houze Jr R A 1998 Sensitivity of monthly three-dimensional radar-echo characteristics to sampling frequency; J. Meteorol. Soc. Japan 76 73–95.

    Google Scholar 

  • Stephens G L 1994 Remote sensing of the lower atmosphere: An introduction; Oxford University Press, UK, 523p.

    Google Scholar 

  • Stephens G L, Vane D G, Boain R J, Mace G G, Sassen K, Wang Z, Illingworth A J, O’Connor E, Rossow W B, Durden S L, Miler S D, Austin R T, Benedetti A, Mitrescu C and CloudSat Science Team 2002 The CloudSat mission and the A-TRAIN: A new dimension to space-based observations of clouds and precipitation; Bull. Am. Meteorol. Soc. 83 1771–1790.

    Article  Google Scholar 

  • Stephens G L, Vane D G, Tanelli S, Im E, Durden S, Rokey M, Reinke D, Partain P, Mace G G, Austin R, L’Ecuyer T, Haynes J, Lebsock M, Suzuki K, Waliser D, Wu D, Kay J, Gettelman A, Wang Z and Marchand R 2008 CloudSat mission performance and early science after first year of operation; J. Geophys. Res. 113 D00A18, doi: 10.1029/2008JD009982.

    Article  Google Scholar 

  • Testud J, Bouar E L, Obligis E and Ali-Mehenni M 2000 The rain profiling algorithm applied to polarimetric weather radar; J. Atmos. Ocean. Tech. 17 332–356.

    Article  Google Scholar 

  • Wielicki B A, Barkstrom B R, Harrison E F, Lee R B, Smith G L and Cooper J E 1996 Clouds and the earth’s radiant energy system (CERES). An earth observing system experiment; Bull. Am. Meteorol. Soc. 77 853–868.

    Article  Google Scholar 

  • Winker D M, Vaughan M A, Omar A, Hu Y, Powell K A, Liu Z, Hunt W H and Young S A 2009 Overview of the CALIPSO Mission and CALIOP data processing algorithms; J. Atmos. Ocean. Tech. 26 2310–2323.

    Article  Google Scholar 

  • Wolff D B, Marks D A, Amitai E, Silberstein D S, Fisher B L, Tokay A, Wang J and Pippitt J L 2005 Ground validation for the Tropical Rainfall Measuring Mission (TRMM); J. Atmos. Ocean. Tech. 22 365–380.

    Article  Google Scholar 

  • Yuan J, Houze Jr R A and Heymsfield A 2011 Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat; J. Atmos. Sci. 68 1653–1674.

    Article  Google Scholar 

  • Yuter S E and Houze Jr R A 1995 Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distribution of vertical velocity, reflectivity, and differential reflectivity; Mon. Weather Rev. 123 1941–1963.

    Article  Google Scholar 

  • Zhang Y, Klein S, Mace G G and Boyle J 2007 Cluster analysis of tropical clouds using CloudSat data; Geophys. Res. Lett. 34 L12813, doi: 10.1029/2007GL029336.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to CloudSat team, NASA and CloudSat Data Processing Center, NASA for providing the 2D-CloudSat-TRMM product. This work was partially supported by a grant from the Department of Science and Technology, Govt. India New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G S BHAT.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SINDHU, K.D., BHAT, G.S. Comparison of CloudSat and TRMM radar reflectivities. J Earth Syst Sci 122, 947–956 (2013). https://doi.org/10.1007/s12040-013-0316-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-013-0316-9

Keywords

Navigation