Skip to main content
Log in

Tidal and gravity waves study from the airglow measurements at Kolhapur (India)

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Simultaneous photometric measurements of the OI 557.7 nm and OH (7, 2) band from a low latitude station, Kolhapur (16.8°N, 74.2°E) during the period 2004–2007 are analyzed to study the dominant waves present in the 80–100 km altitude region of the atmosphere. The nocturnal intensity variations of different airglow emissions are observed using scanning temperature controlled filter photometers. Waves having period lying between 2 and 12 hours have been recorded. Some of these waves having subharmonic tidal oscillation periods 4, 6, 8 and 12 hours propagate upward with velocity lying in the range 1.6–11.3 m/s and the vertical wave length lying between 28.6 and 163 kms. The other waves may be the upward propagating gravity waves or waves resulting from the interaction of inter-mode tidal oscillations, interaction of tidal waves with planetary waves and gravity waves. Some times, the second harmonic wave has higher vertical velocity than the corresponding fundamental wave. Application of these waves in studying the thermal structure of the region is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Abreu V J and Yee J H 1989 Diurnal and seasonal variation of the nighttime OH(8–3) emission at low latitudes; J. Geophys. Res. 94 11,949–11,957.

    Google Scholar 

  • Akmaev R A 2001 Seasonal variations of the terdiurnal tide in the mesosphere and lower thermosphere: A model study; Geophys. Res. Lett. 28 3817–3820, doi: 10.1029/2001GL013002.

    Article  Google Scholar 

  • Angelats i Coll M and Forbes J M 2002 Nonlinear interactions in the upper atmosphere: The s = 1 and s = 3 nonmigrating semidiurnal tides; J. Geophys. Res. 107 1157.

    Article  Google Scholar 

  • Brown B G, Bullock R R, Davis C A, Gotway J H, Chapman M B, Takacs A, Gilleland E and Manning K 2004 New Verification Approaches for Convective Weather Forecasts, Proceedings of the 22nd Conference on Severe Local Storms, October 2004, Hyannis, MA.

  • Burrage M D, Wu D L, Skinner W R, Ortland D A and Hays P B 1995 Latitude and seasonal dependence of the semidiurnal tide observed by the high resolution Doppler imager; J. Geophys. Res. 100 11,313–11,322.

    Article  Google Scholar 

  • Chapman S and Lindzen R S 1970 Atmospheric tides, D. Reidel Press, Dordrecht, Holland, 200p.

    Google Scholar 

  • Dao P D, Farley R, Tao X and Gardner C S 1995 Lidar observations of the temperature profile between 25 and 103 km: Evidence of tidal perturbation; Geophys. Res. Lett. 22 2825–2828.

    Article  Google Scholar 

  • Das S K, Taori A and Jayaraman A 2011 On the role of dust storms in triggering atmospheric gravity waves observed in the middle atmosphere; Ann. Geophys. 29 1647–1654, doi: 10.5194/angeo-29-1647-2011.

    Article  Google Scholar 

  • Daubechies I 1988 Orthonormal bases of compactly supported wavelets; Commun. Pure. Appl. Math. 41 909–996.

    Article  Google Scholar 

  • Deepa V, Ramkumar G, Antonita T M, Kumar K K and Sasi M N 2006 Vertical propagation characteristics and seasonal variability of tidal wind oscillations in the MLT region over Trivandrum (8.5°N, 77°E): First results from SKiYMET Meteor Radar; Ann. Geophys. 24 1–13.

    Article  Google Scholar 

  • Eckermann S D and Preusse P 1999 Global measurements of stratospheric mountain waves from space; Science 286 1534–1537.

    Article  Google Scholar 

  • Fadnavis S, Siingh Devendraa and Singh R P 2009 Mesospheric inversion layer and sprites; J. Geophys. Res. 112 D15305, doi: 10.10292008JD008379.

    Article  Google Scholar 

  • Fagundes P R, Takahashi H, Sahai Y and Gobbi D 1995 Observations of gravity waves from multi-spectral mesospheric nightglow emissions observed at 23°S; J. Atmos. Terr. Phys. 57 395–405.

    Article  Google Scholar 

  • Forbes J M, Zhang X, Angelats i Coll M and Keating G M 2004 Nonmigrating tides in the thermosphere of Mars: A quasi-empirical description; Adv. Space Res. 34 1690–1695.

    Article  Google Scholar 

  • French W J R and Klekociuk A R 2011 Long-term trends in Antarctic winter hydroxyl temperatures; J. Geophys. Res. 116 D00P09, doi: 10.1029/2011JD015731.

    Article  Google Scholar 

  • Fritts D C and Alexander M J 2003 Gravity wave dynamics and effects in the middle atmosphere; Rev. Geophys. 41(1) 1003, doi: 10.1029/2001RG000106.

    Article  Google Scholar 

  • Fritts D C, Isler J R, Hecht J H, Walterscheid R L and Andreassen Ø 1997 Wave breaking signatures in sodium densities and OH nightglow, part II, Simulation of wave and instability structures; J. Geophys. Res. 102 6669–6684.

    Article  Google Scholar 

  • Hagan M E and Roble R G 2001 Modeling diurnal tidal variability with the NCAR TIME-GCM; J. Geophys. Res. 106 24,869–24,882.

    Google Scholar 

  • Hecht J H, Walterscheid R L, Hickey M and Franke S 2001 Climatology and modeling of quasi-monochromatic atmospheric gravity waves observed over Urbana Illinois; J. Geophys. Res. 106(D6) 5181–5195.

    Article  Google Scholar 

  • Hecht J H, Kovalam S, May P T, Mills G, Vincent R A, Walterscheid R L and Woithe J 2004 Airglow imager observations of atmospheric gravity waves at Alice Springs and Adelaide, Australia during the Darwin Area Wave Experiment (DAWEX); J. Geophys. Res. 109 D20S05, doi: 10.1029/2004JD004697.

    Article  Google Scholar 

  • Hecht J H et al. 2009 Imaging of atmospheric gravity waves in the stratosphere and upper mesosphere using satellite and ground-based observations over Australia during the TWPICE campaign; J. Geophys. Res. 114 D18123, doi: 10.1029/2008JD011259.

    Article  Google Scholar 

  • Hertzog A, Vial F, Dörnbrack A, Eckermann S D, Knudsen B M and Pommereau J-P 2002 In situ observations of gravity waves and comparisons with numerical simulations during the SOLVE/THESEO 2000 campaign; J. Geophys. Res. 107(D20), doi: 10.1029/2001JD001025.

    Google Scholar 

  • Hines C O 1960 Internal atmospheric gravity waves at ionospheric heights; Can. J. Phys. 38 1441–1481.

    Article  Google Scholar 

  • Hines C O and Tarasick D W 1987 On the detection and utilization of gravity waves in airglow studies; Planet. Space Sci. 35 851–866.

    Article  Google Scholar 

  • Isler J R, Taylor M J and Fritts D C 1997 Observational evidence of wave ducting and evanescence in the mesosphere; J. Geophys. Res. 102 26,301–26,313.

    Article  Google Scholar 

  • Krassovsky V I 1972 Infrasonic variation of OH emission in the upper atmosphere; Ann. Geophys. 28 739– 746.

    Google Scholar 

  • Li F, Liu A Z, Swenson G R, Hecht J H and Robinson W A 2005a Observations of gravity wave breakdown into ripples associated with dynamical instabilities; J. Geophys. Res. 110 D09S11, doi: 10.1029/2004JD004849.

    Article  Google Scholar 

  • Li T, She C Y, Williams B P, Yuan T, Collins R L, Kieffaber L M and Peterson A W 2005b Concurrent OH imager and sodium temperature/wind lidar observation of localized ripples over northern Colorado; J. Geophys. Res. 110 D13110, doi: 10.1029/2004JD004885.

    Article  Google Scholar 

  • Liu H-L, Li T, She C-Y, Oberheide J, Wu Q, Hagan M E, Xu J, Roble R G, Mlynczak M G and Russell J M III 2007 Comparative study of short term tidal variability; J. Geophys. Res. 112 D13108, doi: 10.1029/2007JD008542.

    Article  Google Scholar 

  • Lopez-Gonzalez M J, Rodriguez E, Shepherd G G, Sargoytchev S, Shepherd M G, Aushev V M, Brown S, Garcia-Comas M and Wiens R H 2005 Tidal variations of O2 atmospheric and OH(6–2) airglow and temperature at mid-latitudes from SATI observations; Ann. Geophys. 23 3579–3590.

    Article  Google Scholar 

  • Manson A H, Meek C, Hagan M E, Zhang X and Luo Y 2004 Global distributions of diurnal and semidiurnal tides: Observations from HRDI-UARS of the MLT region and comparisons with GSWM-02 (migrating, non migrating components); Ann. Geophys. 22 1529–1548.

    Article  Google Scholar 

  • McLandress C, Shepherd G G, Solheim B H, Burrage M D, Hays P B and Skinner W R 1996 Combined mesosphere/thermosphere winds using WINDII and HRDI data from the upper atmosphere research satellite; J. Geophys. Res. 101 10,441–10,453, doi: 10.1029/95JD01706.

    Google Scholar 

  • Meriwether J W, Gao X, Wickwar V, Wilkerson T, Beissner K, Collins S and Hagan M 1998 Observed coupling of the mesospheric inversion layer to the thermal structure; Geophys. Res. Lett. 25 1479–1482.

    Article  Google Scholar 

  • Molina A Lopez-Puestas, Lopez-Moreno J J and Rodrigo R 1985 Gravity waves from five simultaneous emissions: OH(6–2), NaD, O\(_{2}(^{1}\Sigma )\), OI–557.7 nm, and the visible continuum; Can. J. Phys. 63 592–596.

    Article  Google Scholar 

  • Mukherjee G K 2003 Studies of equatorial F-region depletions and dynamics using multiple wavelength nightglow imaging; J. Atmos. Solar-Terr. Phys. 65 379–390.

    Article  Google Scholar 

  • Nakamura T, Higashikawa A, Tsuda T and Matsushita Y 1999 Seasonal variations of gravity wave structures in OH airglow with a CCD imager at Shigaraki; Earth Planets Space 51 897–906.

    Google Scholar 

  • Narayanan L, Gurubaran V S and Emperumal K 2010 Airglow imaging observations of small-scale structures driven by convective instability in the upper mesosphere over Tirunelveli (8.7°N); J. Geophys. Res. 115 D19119, doi: 10.1029/2009JD012937.

    Article  Google Scholar 

  • Pautet P-D, Taylor M J, Liu A Z and Swenson G R 2005 Climatology of shot-period gravity waves observed over northern Australia during the Darwin Area Wave Experiment (DAWEX) and their dominant source regions; J. Geophys. Res. 110 D03S90, doi: 10.1029/2004JD004954.

    Article  Google Scholar 

  • Reddi C R and Ramkumar G 1997 Climatologies of tidal winds in the radio-meteor region over Trivandrum (8°N); J. Atmos. Sol. Terr. Phys. 59 1757–1777.

    Article  Google Scholar 

  • Roble R G and Shepherd G G 1997 An analysis of wind imaging interferometer observations of O(1S) equatorial emission rates using the thermosphere–ionosphere mesosphere-electrodynamics general circulation model; J. Geophys. Res. 102 2467–2474.

    Article  Google Scholar 

  • Shepherd G G, Roble R G, Zhang S P, McLandress C and Wiens R H 1998 Tidal influences on midlatitude airglow: Comparison of satellite and ground-based observations with TIME-GCM predictions; J. Geophys. Res. 103 14,741–14,751.

    Google Scholar 

  • Shepherd G G, Stegman J, Singer W and Roble R G 2004 Equinox transition in wind and airglow observations; J. Atmos. Sol. Terr. Phys. 66 481–491.

    Article  Google Scholar 

  • Siingh Devendraa, Singh R P, Singh A K, Kulkarni M N, Gautam A S and Singh Abhay K 2011 Solar activity, lightning and climate; Surv. Geophys. 32 659–703, doi: 10.1007/s10712-011-9127-1.

    Article  Google Scholar 

  • Siingh D, Singh R P, Singh A K, Kumar S, Kulkarni M N and Singh Abhay K 2012 Discharge in stratosphere and mesosphere; Space Sci. Rev. 169 73–121.

    Article  Google Scholar 

  • Smith S M, Mendillo M, Baumgardner J and Clark R R 2000 Mesospheric gravity wave imaging at subauroral site: First results from Millstone Hill; J. Geophys. Res. 106 27,119–27,130.

    Google Scholar 

  • Snively J B and Pasko V P 2008 Excitation of ducted gravity waves in the lower thermosphere by tropospheric sources; J. Geophys. Res. 113 A06303, doi: 10.1029/2007JA012693.

    Article  Google Scholar 

  • Takahashi H, Batista P P, Sahai Y and Clemesha B R 1985 Atmospheric wave propagation in the mesopause region observed by the OH(8, 3) band, NaD, O2A(8645A) band and OI 5577 A nightglow emissions; Planet. Space Sci. 33 381–384.

    Article  Google Scholar 

  • Takahashi H, Gobbi D, Batista P P, Melo S M L, Teixeira N R and Buriti R A 1998 Dynamical influence on the equatorial airglow observed from the South American sector; Adv. Space Res. 21 817–825.

    Article  Google Scholar 

  • Tarasick D W and Hines C O 1990 The observable effects of gravity waves in airglow emissions; Planet. Space Sci. 38 1105–1119.

    Article  Google Scholar 

  • Tarasick D W and Shepherd G G 1992a Effects of gravity waves on complex airglow chemistries. 1 O2(b1 Σ  +  g) emission; J. Geophys. Res. 97 3185–3193.

    Article  Google Scholar 

  • Tarasick D W and Shepherd G G 1992b Effects of gravity waves on complex airglow chemistries. 2. OH emission; J. Geophys. Res. 97 3195–3208.

    Article  Google Scholar 

  • Taori A and Taylor M 2010 Dominant winter-time mesospheric wave signatures over a low latitude station, Hawaii (20.8°N): An investigation; J. Earth Syst. Sci. 119 259–264.

    Article  Google Scholar 

  • Taori A, Guharay A and Taylor M J 2003 On the use of simultaneous measurements of OH and O2 emissions to investigate wave growth and dissipation; Ann. Geophys. 25 639–643.

    Article  Google Scholar 

  • Taori A, Taylor M J and Franke S 2005 Terdiurnal wave signatures in the upper mesospheric temperature and their association with the wind fields at low latitudes (20°N); J. Geophys. Res. 110 D09S06, doi: 10.1029/2004JD004564.

    Article  Google Scholar 

  • Taori A, Guharay A and Taylor M J 2007 On the use of simultaneous measurements of OH and O2 emissions to investigate wave growth and dissipation; Ann. Geophys. 25 639–643, doi: 10.5194/angeo-25-639.

    Article  Google Scholar 

  • Taylor M J, Pendleton W R Jr, Gardner C S and States R J 1999 Comparison of terdiurnal tidal oscillations in mesospheric OH rotational temperature and Na lidar temperature measurements at mid-latitudes for fall/spring conditions; Earth Planets Space 51 877–885.

    Google Scholar 

  • Thayaparan T 1997 The terdiurnal tide in the mesosphere and lower thermosphere over London, Canada (43°N, 81°W); Geophys. Res. Lett. 102 21,695–21,708.

    Google Scholar 

  • Thayaparan T, Hocking W K and MacDougall J 1995 Observational evidence of tidal/gravity wave interactions using the UWO 2 MHz radar; Geophys. Res. Lett. 22 373–376.

    Article  Google Scholar 

  • Tsuda T, Inoue T, Fritts D C, Vanzandt T E, Kato S, Sato T and Fukao S 1989 MST radar observations of a saturated gravity wave spectrum; J. Atmos. Sci. 46 2440–2447.

    Article  Google Scholar 

  • Vadas S L, Yue J, She C-Y, Stamus P A and Liu A Z 2009 A model study of the effects of winds on concentric rings of gravity waves from a convective plume near Fort Collins on 11 May 2004; J. Geophys. Res. 114 D06103, doi: 10.1029/2008JD010753.

    Article  Google Scholar 

  • Vincent G A, Nuno D and Hindmarsh M 1998 Numerical simulations of string networks in the Abelian-Higgs Model; Phys. Rev. Lett. 80 2277–2280.

    Article  Google Scholar 

  • Wiens R H and Weill G 1973 Diurnal, annual and solar cycle variations of hydroxyl and sodium nightglow intensities in the Europe-Africa sector; Planet. Space Sci. 21 1011–1027.

    Article  Google Scholar 

  • Won Y-I, Sivjee G G, Azeem S M I and Wu Q 2007 Tidal features in the wintertime mesospheric temperature and neutral winds recorded at Resolute Bay, Canada (74.681N, 94.901W); J. Atmos. Sol. Terr. Phys. 69 459–470.

    Article  Google Scholar 

  • Wu Q, Mitchell N J, Killeen T L, Solomon S C and Younger P T 2005 A high-latitude 8-hour wave in the mesosphere and lower thermosphere; J. Geophys. Res. 110 A09301, doi: 10.1029/2005JA011024.

    Article  Google Scholar 

  • Yudin V A, Geller M A, Khattatov B V, Ortland D A, Burrage M D, McLandress C and Shepherd G G 1998 TMTM simulations of tides: Comparison with UARS observations; Geophys. Res. Lett. 25 221–224.

    Article  Google Scholar 

  • Zhang S-P, Roble R G and Shepherd G G 2001 Tidal Influence on the oxygen and hydroxyl nightglows: WINDII observations and TIME-GCM simulations; J. Geophys. Res. 106 21,381–21,394.

    Google Scholar 

  • Zhang S P, Goncharenko L P, Salah J E, Roble R G and Shepherd G G 2003 Climatology of neutral winds in the lower thermosphere over Millstone Hill (42.6°N) observed from ground and from space; J. Geophys. Res. 108 1051–1062.

    Article  Google Scholar 

  • Zhao G, Liu L, Ning, B, Wan W and Xiong J 2005 The terdiurnal tide in the mesosphere and lower thermosphere over Wuhan (30°N,114°E); Earth Planets Space 57 393–398.

    Google Scholar 

Download references

Acknowledgements

RNG thanks the Department of Science and Technology (DST), Government of India, New Delhi for providing financial assistance to carry out the research in the upper atmosphere under the scientific collaboration program between IIG, Navi Mumbai and Shivaji University, Kolhapur and also thanks the Director, IIG Mumbai for constant encouragement and extending necessary facilities. This work is partially supported by the collaboration with IITM Pune, BHU Varanasi and Kolhapur under the CAWSES program. DS thanks to Prof. BN Goswami, Director, IITM for his kind support. The authors wish to thank the anonymous reviewers for their critical comments which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R N GHODPAGE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

GHODPAGE, R.N., SIINGH, D., SINGH, R.P. et al. Tidal and gravity waves study from the airglow measurements at Kolhapur (India). J Earth Syst Sci 121, 1511–1525 (2012). https://doi.org/10.1007/s12040-012-0240-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-012-0240-4

Keywords

Navigation