Skip to main content
Log in

Equatorial electrojet in the south Atlantic anomaly region

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Features of the equatorial electrojet are studied at Sao Luiz (2.6°S, 44.2°W, inclination −0.25°) in eastern Brazil and Sikasso (11.3°N, 5.7°W, inclination 0.1°) in the western African sector. The stations are situated on either side of the lowest magnetic field intensity in the region of rapid changes in the declination. The daily variations of ΔX at the two stations are almost similar with the peak around noon with maximum values during equinoxes and minimum values during J-solstices. Daily variations of ΔY differ with the maximum deviation of about −35 nT around noon at Sao Luiz and much smaller value of about −10 nT around 14 h LT for Sikasso. The direction of the H vector varies from 15°W of north at 08 h to more than 30°W of north at 17 h for Sao Luiz and from 14°E of north to 25°W of north at 18 h for Sikasso. The plot of the deviations in ΔX and ΔY at different hours for the two stations shows the points along narrow ellipses with major axis aligned along 22°W of north for Sao Luiz and along 3°W of north for Sikasso as compared to declination of 20°W for Sao Luiz and 6°W for Sikasso. The deviations in ΔX at the two stations are fairly well correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anandarao B G and Raghavarao R 1987 Structural changes in the currents and fields of the equatorial electrojet due to zonal and meridional winds; J. Geophys. Res. 92 2514–2526.

    Article  Google Scholar 

  • Arora B R, Mahashabde M V and Kalra R 1993 Indian IEEY geomagnetic observational program and some preliminary results; Rev. Bras. Geofis. 11 365–385.

    Google Scholar 

  • Baker W G and Martyn D F 1953 Electric currents in the ionosphere, 1, the conductivity; Phil. Trans. Roy. Soc. A246 281–294.

    Article  Google Scholar 

  • Chapman S 1951 The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo, Peru and elsewhere; Arch. Meteorol. Geophys. Bioklimatol. A4 368–390.

    Google Scholar 

  • Doumouya V, Vassal J, Cohen Y, Fambitakoye O and Menvielle M 1998 Equatorial electrojet at African longitudes: First results from magnetic measurements; Ann. Geophys. 16 658–676.

    Article  Google Scholar 

  • Gangepain J, Crochet M and Richmond A D 1977 Comparison of equatorial electrojet models; J. Atmos. Terr. Phys. 39 1119–1124.

    Article  Google Scholar 

  • Fambitakoye O and Mayaud P N 1976a Equatorial electrojet and regular daily variations of SR-I. A determination of the equatorial electrojet parameters; J. Atmos. Terr. Phys. 38 1–17.

    Article  Google Scholar 

  • Fambitakoye O and Mayaud P N 1976b Equatorial electrojet and regular daily Variations SR-II. The Centre of the equatorial electrojet; J. Atmos. Terr. Phys. 38 19–26.

    Article  Google Scholar 

  • Forbes J M 1981 The equatorial electrojet; Rev. Geophys. Space Phys. 19 469–504.

    Article  Google Scholar 

  • Forbes J M and Lindzen R S 1976 Atmospheric solar tides and their electromagnetic effects, II, The equatorial electrojet; J. Atmos. Terr. Phys. 38 911–920.

    Article  Google Scholar 

  • Forbush S and Casaverde M 1961 Equatorial electrojet in Peru; Carnegie Institution of Washington, Report No. 620.

  • Hirono M 1952 A theory of diurnal magnetic variations in equatorial regions and conductivity of the ionospheric E region; J. Geomagn. Geoelectr. 4 7–21.

    Article  Google Scholar 

  • Onwumechili C A, Kawasaki K and Akasofu S I 1973 Relationship between the equatorial electrojet and polar magnetic variations; Planet. Space Sci. 21 1–16.

    Article  Google Scholar 

  • Rastogi R G 1962 Longitudinal variation in the equatorial electrojet; J. Atmos. Terr. Phys. 24 1031–1040.

    Article  Google Scholar 

  • Rastogi R G 1972 Sudden disappearance of Es-q and the reversal of equatorial electric Fields; Ann. Geophys. 28 717–728.

    Google Scholar 

  • Rastogi R G 1975 On the simultaneous existence of eastward and westward flowing equatorial electrojet currents; Proc. Indian Acad. Sci. 78 80–92.

    Google Scholar 

  • Rastogi R G 1978 Theory of preliminary negative impulses in SSC in H at equatorial Stations; Proc. Indian Acad. Sci. 87 57–60.

    Google Scholar 

  • Rastogi R G 1999 Ionospheric current system in Indo-Russian longitude sector; Sci. Cult. 65 269–282.

    Google Scholar 

  • Rastogi R G 1989 The equatorial electrojet: Magnetic and ionospheric effects; In: Geomagnetism (ed.) Jacobs J, Academic Press 3 461–425.

  • Rastogi R G 2006 Sq and sfe currents at equatorial stations along the western and eastern African sectors; Earth Planets Space 58 1475–1478.

    Google Scholar 

  • Rastogi R G and Chandra H 1974 Interplanetary magnetic field and the equatorial Ionosphere; J. Atmos. Terr. Phys. 36 377–379.

    Article  Google Scholar 

  • Rastogi R G and Chandra H 2002 Equatorial electrojet current flow directions; J. Indian Geophys. Union 6 169–174.

    Google Scholar 

  • Rastogi R G and Iyer K N 1976 Quiet day variation of geomagnetic H field at low Latitudes; J. Geomagn. Geoelectr. 36 377–379.

    Google Scholar 

  • Rastogi R G and Patel V L 1975 Effect of interplanetary magnetic field on ionosphere over the magnetic equator; Proc. Indian Acad. Sci. 82 121–141.

    Google Scholar 

  • Rastogi R G and Trivedi N B 2009 Asymmetries in the equatorial electrojet around N-E Brazil sector; Ann. Geophys. 27 1–17.

    Article  Google Scholar 

  • Rastogi R G, Chandra H and Misra R K 1971 Effect of magnetic activity on electron drifts in the equatorial electrojet region; Nature 233 13–15.

    Google Scholar 

  • Rastogi R G, Chandra H, Chakrabarty D K, Kitamura K and Yumuto K 2007 Day-to-day correlation of equatorial electrojet at two stations separated by 2000 km in Central South America; Ann. Geophys. 25 1–6.

    Article  Google Scholar 

  • Rastogi R G, Chandra H, James M E, Kitamura K and Yumuto K 2008 Characteristics of equatorial electrojet in Central South America; Earth Planets Space 60 623–632.

    Google Scholar 

  • Rastogi R G, Chandra H and Yumuto K 2010 Equatorial electrojet in East Brazil longitudes; J. Earth Syst. Sci. 119 497–505.

    Article  Google Scholar 

  • Reddy C A 1989 The equatorial electrojet; PAGEOPH 131 485–508.

    Article  Google Scholar 

  • Richmond A D 1973 Equatorial electrojet, 1, Development of a model including winds and instabilities; J. Atmos. Terr. Phys. 36 1083–1103.

    Article  Google Scholar 

  • Ronchi C, Sudan R N and Similon P L 1990 Effect of short-scale turbulence on kilometer wavelength irregularities in the equatorial electrojet; J. Geophys. Res. 95 189–200.

    Article  Google Scholar 

  • Sarabhai V and Nair K N 1971 Morphology of the geomagnetic field variations and a study of the interplanetary magnetic field fluctuations in relation to the daily variations of the geomagnetic field at low latitudes; Cosmic Electrodyn. 2 3–21.

    Google Scholar 

  • Sugiura M and Cain V C 1966 A model equatorial electrojet; J. Geophys. Res. 71 1869–1877.

    Google Scholar 

  • Sugiura M and Poros D J 1969 An improved model equatorial electrojet; J. Geophys. Res. 74 4026–4034.

    Google Scholar 

  • Untiedt J 1967 A model of the equatorial electrojet including meridional currents; J. Geophys. Res. 72 5799–5810.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Chandra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rastogi, R.G., Chandra, H., Trivedi, N.B. et al. Equatorial electrojet in the south Atlantic anomaly region. J Earth Syst Sci 120, 301–310 (2011). https://doi.org/10.1007/s12040-011-0050-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-011-0050-0

Keywords

Navigation