Skip to main content
Log in

Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Continuous observation data collected over the year 2008 at Astronomical Observatory, Thiruvananthapuram in south Kerala (76°59′E longitude and 8°30′N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed. We have investigated relationships of soil moisture with surface albedo and soil thermal diffusivity. The diurnal variation of surface albedo appears as a U-shaped curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is greater than 40°. So the daily average surface albedo was calculated using the data when solar elevation angle is greater than 40°. The results indicate that the mean daily surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. Soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

α :

Surface albedo

S u :

Reflected solar radiation (W/m2)

S d :

Total downward solar radiation (W/m2)

T :

Soil temperature (°C)

k :

Soil thermal diffusivity (m2s−1)

t :

Time (s)

A :

Amplitude of the soil thermal wave at any depth (°C)

A 0 :

Amplitude of thermal wave at the surface (°C)

z :

Soil depth (m)

ω :

Angular velocity of earth’s rotation (rad/s)

θ :

Solar elevation angle (degree)

Ws :

Average soil moisture (%)

η :

Volumetric moisture content (m3m−3)

References

  • Anandakumar K, Venkatesan R and Thara V Prabha 2001 Soil thermal properties at Kalpakkam in coastal south India; Proc. Indian Acad. Sci. (Earth Planet Sci.) 110(3) 239–245.

    Google Scholar 

  • Arkhangel’skaya T A 2009 Parameterization and mathematical modeling of the dependence of soil thermal diffusivity on the water content; Eurasian Soil Science 42(2) 162–172.

    Article  Google Scholar 

  • Bao Y, Lu S, Zhang Y, Meng X and Yang S 2008 Improvement of surface albedo simulations over arid regions; Adv. Atmos. Sci. 25(3) 481–488.

    Article  Google Scholar 

  • Baver L D, Gardner W H and Gardner N R 1972 Soil Physics, 4th edn. (New York: John Wiley and Sons).

    Google Scholar 

  • Betts A K and Ball J H 1997 Albedo on the boreal forest; J. Geophys. Res. 102 2891–2899.

    Google Scholar 

  • Chacko P Tessy and Renuka G 2008 Thermal diffusivity of soils in iso-hyperthermic temperature regime by harmonic analysis; Indian J. Radio Space Phys. 37 360–365.

    Google Scholar 

  • Charney J G 1975 Dynamics of deserts and drought in the Sahel; Quart. J. Roy. Meteor. Soc. 101(428) 193–202.

    Article  Google Scholar 

  • Cunnington W M and Rowntree P R 1986 Simulations of Saharan atmosphere — dependence on moisture and albedo; Quart. J. Roy. Meteor. Soc. 112 971–999.

    Google Scholar 

  • Douville H and Chauvin F 2000 Relevance of soil moisture for seasonal climate predictions: A preliminary study; Clim. Dyn. 16 719–736.

    Article  Google Scholar 

  • Elfatih A B Eltahir 1998 A soil moisture-rainfall feedback mechanism 1. Theory and Observations; Water Resour. Res. 34(4) 765–776.

    Article  Google Scholar 

  • Gascoin S, Ducharne A, Ribstein P, Lejaeune Y and Wagnon 2009 Dependence of bare soil albedo on soil moisture on the moraine of the Zongo glacier (Bolivia): Implications for land surface modeling; Geophys. Res. Lett. 36 L02405.

    Article  Google Scholar 

  • Guan X D, Huang J P, Guo N, Bi J R and Wang G 2009 Variability of soil moisture and its relationship with surface albedo and soil thermal parameters over the Loess Plateau; Adv. Atmos. Sci. 26(4) 692–700.

    Article  Google Scholar 

  • Hanks R J and Ashcroft G L 1986 Applied Soil Physics (Berlin: Springer-Verlag).

    Google Scholar 

  • Idso S B, Jackson R D, Reginato R J, Kimball B A and Nakayama F S 1975 The dependence of bare soil albedo on soil water content; J. Appl. Meteorol. 14 109–113.

    Article  Google Scholar 

  • Kaushik S B, Sharma G S and Mokhashi B G 1965 Preliminary studies on subsoil temperatures at Jodhpur; Def. Sci. J. 15(1) 30–35.

    Google Scholar 

  • Koster R D et al 2004 Regions of strong coupling between soil moisture and precipitation; Science 305 1138–1141.

    Article  Google Scholar 

  • Lakshmi V, Piechota T, Narayan U and Tang C 2004 Soil moisture as an indicator of weather extremes; Geophys. Res. Lett. 31 L11401.

    Article  Google Scholar 

  • Lamba B S and Bhandari S 1998 Some aspects of thermal diffusivity for various soil layers in different harmonics; Mausam 49(2) 255–258.

    Google Scholar 

  • Li Y and Hu Z 2009 A study on parameterization of surface albedo over grassland surface in the northern Tibetan Plateau; Adv. Atmos. Sci. 26(1) 161–168.

    Article  Google Scholar 

  • Liu H Z, Wang B M and Fu C B 2008 Relationships between surface albedo, soil thermal parameters and soil moisture in the semi-arid area of Tongyu, Northeastern China; Adv. Atmos. Sci. 25(5) 757–764.

    Article  Google Scholar 

  • Mayor S, Smith WL Jr, Nguyen L, Alberta T A, Minnis P, Whitlock C H and Schuster G L 1996 Asymmetry in the diurnal variation of surface albedo; Technical Report: NASA-96-igars-sm.

  • Menon P A and Rajan C K 1989 Climate of Kerala (Cochin: Classic Publ.).

    Google Scholar 

  • Minnis P, Mayor S, Smith W L Jr and Young D F 1997 Asymmetry in the diurnal variation of surface albedo; IEEE Trans. Geos. Remote Sens. 35(4) 879–891.

    Article  Google Scholar 

  • Oke T R 1978 Boundary Layer Climates (New York: John Wiley).

    Book  Google Scholar 

  • Padmanabhamurty B, Amaralingeswara Rao K and Mukherjee R 1998 A preliminary analysis of soil temperature at five different sites under land surface processes experiment in the Sabarmati river basin; Indian J. Radio Space Phys. 27 199–206.

    Google Scholar 

  • Pielke R A, Liston G E, Eastman J E and Lu L X 1999 Seasonal weather prediction as an initial value problem; J. Geophys. Res. 104 19,463–19,479.

    Article  Google Scholar 

  • Shi X 2009 Initial soil moisture effects on the climate in China — a regional climate model study; J. Ocean Univ. China (Oceanic and Coastal Sea Research) 8 111–120.

    Google Scholar 

  • Sivadas T K 2007 Sensors and measurement systems for environmental, marine, fisheries and agricultural applications (Cochin: Central Institute of Fisheries Technology).

    Google Scholar 

  • Song Y M, Guo W and Zhang Y 2009 Numerical study of impacts of soil moisture on the diurnal and seasonal cycles of sensible/latent heat fluxes over semi-arid region; Adv. Atmos. Sci. 26(2) 319–326.

    Article  Google Scholar 

  • Sun D L and Pinker R T 2004 Case study of soil moisture effect on land surface temperature retrieval; IEEE Trans. Geos. Remote Sens. Lett. 1 127–130.

    Article  Google Scholar 

  • Timbal B, Power S, Colman R, Viviand J and Lirola S 2002 Does soil moisture influence climate variability and predictability over Australia? J. Climate 15 1230–1238.

    Article  Google Scholar 

  • Tessy Chacko P and Renuka G 2002 Temperature mapping, thermal diffusivity and subsoil heat flux at Kariavattom of Kerala; Proc. Indian Acad. Sci. (Earth Planet Sci.) 111(1) 79–85.

    Google Scholar 

  • Wang K C, Wang P C, Liu J M, Sparrow M, Haginoya S and Zhou X J 2005 Variation of surface albedo and soil thermal parameters with soil moisture content at a semidesert site on the western Tibetan Plateau; Bound.-Layer Meteorol. 116 117–129.

    Article  Google Scholar 

  • Wang S, Grant R F, Verseghy D L and Black T A 2002a Modeling carbon-coupled energy and water dynamics of a boreal aspen forest in a general circulation model land surface scheme; Int. J. Climatol. 22 1249–1265.

    Article  Google Scholar 

  • Wang S, Grant R F, Verseghy D L and Black T A 2002b Modeling carbon dynamics of boreal forest ecosystems using the Canadian land surface scheme; Climatic Change 55 451–477.

    Article  Google Scholar 

  • Wu W R, Geller M A and Dickinson R E 2002 The response of soil moisture to long-term variability of precipitation; J. Hydrometeor. 3 604–613.

    Article  Google Scholar 

  • Zhang Q, Cao X and Wei G 2002 Observation and study of land surface parameters over Gobi in typical arid region; Adv. Atmos. Sci. 19(1) 121–134.

    Article  Google Scholar 

  • Zhang Q and Huang R H 2004 Parameters of land-surface processes for Gobi in North-west China; Bound.-Layer Meteorol. 110 471–478.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Roxy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roxy, M.S., Sumithranand, V.B. & Renuka, G. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala. J Earth Syst Sci 119, 507–517 (2010). https://doi.org/10.1007/s12040-010-0038-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-010-0038-1

Keywords

Navigation