Skip to main content
Log in

Atmospheric aerosol formation and its growth during the cold season in India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The effects of molecular diffusivity of H2SO4 and NH3 vapours on nucleated particles of SO 2−4 and NO 3 species are reported. Condensation sink and source rate of H2SO4 and NH3 vapours, growth rates and ratios of real to apparent nucleation rates are calculated for SO 4 and NO 3 aerosols using fractional contributions of them in total aerosol size-distribution during the measurement period at Pune, reported in Chate and Pranesha (2004). The percentage of nucleated SO 2−4 and NO 3 aerosols of mid-point diameter 13 nm are 2% and 3% respectively of the total particles (13 nm ≤ D p ≤ 750 nm) for both H2SO4 and NH3 diffusion. In the diameter range 75 nm ≤ D p ≤ 133 nm, it is 48% and 45% of SO 2−4 and NO 3 aerosols, respectively for NH3 diffusion and 43% and 36% of SO 2−4 and NO 3 for H2SO4 diffusion. Increase in percentage of nucleated particles of these species corresponding to mid-point diameter 133 nm around 0900 h IST is significantly higher than that of mid-point diameter 13 nm and it is due to photo-chemical nucleation, coagulation and coalescence among nucleated clusters. The ratios of real to apparent formation rates for SO 2−4 and NO 3 aerosols are 12% and 11% respectively, corresponding to mid-point diameter 13 nm, 17% and 13%, for midpoint diameter 133 nm and 12% and 9.5%, for mid-point diameter 750 nm. The results indicate that nucleation involving H2SO4 and acidic NH3 diffusion on SO 2−4 and NO 3 particles is the most relevant mechanism in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam A, Shi Ping J and Harrison R 2003 Observations of new particle formation in urban air; J. Geophys. Res. 108 D3, doi: 1029/2001/JD001417.

    Article  Google Scholar 

  • Chate D M and Pranesha T S 2004 Field measurements of sub-micron aerosol concentrations during cold season in India; Curr. Sci. 86/12 1610–1613.

    Google Scholar 

  • Chate D M and Devara P C S 2005 Growth properties of sub-micron aerosols during cold season in India; Aerosol Air Qual. Res. 5/2 1–14.

    Google Scholar 

  • Douglas A O, Ma Y, Sullivan A, Sierau B, Baumann K and Weber R J 2003 Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition; Atmos. Environ. 37 1243–1259.

    Article  Google Scholar 

  • Kazil J and Lovejoy E R 2007 A semi-analytical method for calculating rates of new sulfate aerosol formation from the gas phase; Atmos. Chem. Phys. 7 3447–3459, http://www.atmos-chem-phys.net/7/3447/2007/.

    Article  Google Scholar 

  • Kerminen V M and Kulmala M 2002 Analytical formulae connecting the ‘real’ and ‘apparent’ nucleation rate and the nucleus number concentration for atmospheric nucleation events; J. Aerosol Sci. 33 609–622.

    Article  Google Scholar 

  • Kerminen V M, Kari E, Lehtinen J, Anttila T and Kulmala M 2004 Dynamics of atmospheric nucleation mode particles: A timescale analysis; Tellus 56B 135–146.

    Google Scholar 

  • Kuang C, McMurry P H, McCormick A V and Eisele F L 2008 Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations; J. Geophys. Res. 113 D10209, doi: 10.1029/2007JD 009253.

    Article  Google Scholar 

  • Kulmala M, Mäkelä J M, Koponen I and Pirjola L 1998a Formation of cloud condensation nuclei in boreal forest area; J. Aerosol Sci. 29(suppl. 1) pp. S567–S568.

    Article  Google Scholar 

  • Kulmala M, Toivonen A, Makela J M and Laaksonen A 1998b Analysis of the growth of nucleation mode particles in Boreal Forest; Tellus 50 449–462.

    Article  Google Scholar 

  • Kulmala M, Hameri K, Aalto P, Makela J M, Pirjola L, Nilsson E D, Buzorius G, Rannick U, Dal Maso M, Seidl W, Hoffmann T, Janson R, Hansson H C, Viisanen Y, Laaksonen A and O’Dowd C D 2001a Overview of the International Project on biogenic aerosol formation in the boreal forest (BIOFOR); Tellus 53B 324–343.

    Google Scholar 

  • Kulmala M, Dal Maso M, Makela J M, Pirjola L, Vakeva M M, Aalto P, Mikkulainen P, Hameri K and O’Dowd C D 2001b On the formation, growth and composition of nucleation mode particles; Tellus 53B 479–490.

    Google Scholar 

  • Kulmala M 2003 How particles Nucleate and Grow?; Science 302 1000–1001.

    Article  Google Scholar 

  • Kulmala M, Vehkamki H, Petaja T, Dal Maso M, Lauri A, Kerminen V M, Birmili W and McMurry P 2004 Formation and growth rates of ultra fine atmospheric particles a review of observations; J. Aerosol Sci. 35 143–176.

    Article  Google Scholar 

  • Massman W J 1998 A review of the molecular diffusivities of H2O, CO2, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP; Atmos. Environ. 32 1111–1127.

    Article  Google Scholar 

  • Merikanto J, Napari I, Vehkamäki H, Anttila T and Kulmala M 2007 New parameterization of sulphuric acid-ammonia water ternary nucleation rates at tropospheric conditions; J. Geophys. Res. 11 D15207, doi:10.1029/2006JD007977.

    Article  Google Scholar 

  • Modgil M S, Kumar S, Tripathi S N and Lovejoy E R 2005 A parameterization of ion-induced nucleation of sulphuric acid and water for atmospheric conditions; J. Geophys. Res. 110 D19205, doi: 10.1029/2004JD005475.

    Article  Google Scholar 

  • Momin G A, Rao P S P, Safai P D, Ali K, Naik M S and Pillai A G 1999 Atmospheric aerosol characteristics studies at Pune and Thiruvananthapuram during INDOEX-1998; Curr. Sci. 76 985–989.

    Google Scholar 

  • Mönkkönen P, Koponen I K, Lehtinen K E J, Hämeri K, Uma R and Kulmala M 2005 Measurements in a highly polluted Asian mega city: Observations of aerosol number size distribution, modal parameters and nucleation events; Atmos. Chem. Phys. 5 57–66.

    Article  Google Scholar 

  • Murugavel P and Chate D M 2009 Generation and growth of aerosols over Pune, India; Atmos. Environ. 43 820–828.

    Article  Google Scholar 

  • Pirjola L, Kulmala M, Wilck M, Bischoff A, Stratmann F and Otto E 1999 Effects of aerosol dynamics on the formation of sulfuric acid aerosols and cloud condensation nuclei; J. Aerosol Sci. 30 1079–1094.

    Article  Google Scholar 

  • Pirjola L, Korhonen H and Kulmala M 2002 Condensation/evaporation of insoluble organic vapor as functions of source rate and saturation vapor pressure; J. Geophys. Res. 107(D11) 4108, doi: 10.1029/2001JD001228.

    Article  Google Scholar 

  • Pruppacher H R and Klett J D 2000 Microphysics of clouds and precipitation (London: Kluwer Academic Publishers), pp. 954.

    Google Scholar 

  • Riipinen I, Sihto S L, Kulmala M, Arnold F, Dal Maso M, Birmili W, Saarnio K, Teinil K, Kerminen V M, Laaksonen A and Lehtinen K E J 2007 Connections between atmospheric sulphuric acid and new particle formation during QUEST IIIIV campaigns in Heidelberg and Hyytiälä; Atmos. Chem. Phys. 7 1899–1914.

    Article  Google Scholar 

  • Seinfeld J H and Pandis S N 1998 Atmospheric Chemistry and Physics; A Wiley Interscience Publication (New York: John Wiley & Sons, Inc), pp. 1326.

    Google Scholar 

  • Spracklen D V, Carslaw K S, Kulmala M, Kerminen V M, Mann G W and Sihto S L 2006 The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales; Atmos. Chem. Phys. 6 5631–5648, http://www.atmos-chemphys.net/6/5631/2006/.

    Article  Google Scholar 

  • Vehkamäki H, Kulmala M, Napari I, Lehtinen K E J, Timmreck C, Noppel M and Laaksonen A 2002 An improved parameterization for sulphuric acid-water nucleation rates for tropospheric and stratospheric conditions; J. Geophys. Res. 107(D22) 4622, doi: 10.1029/2002JD2184.

    Article  Google Scholar 

  • Zhu Y, Hinds W C, Kim S, Shen S and Sioutas C 2002 Study of ultra fine particles near a major highway with heavy-duty diesel traffic; Atmos. Environ. 36 4323–4335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Chate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chate, D.M., Murugavel, P. Atmospheric aerosol formation and its growth during the cold season in India. J Earth Syst Sci 119, 471–477 (2010). https://doi.org/10.1007/s12040-010-0036-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-010-0036-3

Keywords

Navigation