Skip to main content
Log in

Inconsistency between molecular structure and energy affecting the dipolar strength between electronic states: a probe into unique inter functional correlations among CAM-B3LYP, LC-\(\omega\)HPBE, \(\omega\)-B97XD functionals

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Density Functional Theory (DFT) suffers from a strong dichotomy between accuracy and consistency. There exists a paucity of a generic linear route to the systematic improvement of computed results. Benchmark studies are often unidimensional and based on molecular/atomic properties that contour on a single Potential Energy Surface. Thus, the DFT functionals so developed and optimized to similar chemical accuracy lack a universal adherence to the unique density distribution for a fixed nuclear arrangement. We have identified this as a major source of inconsistency within the DFT framework and have explored through the cross-correlations between Structure, Energy, and Dipolar Strength. Since Range Separated Hybrid (RSH) functionals are well-known in literature to produce one of the finest molecular structures in both ground and excited states, in this communication, we have utilized CAM-B3LYP, LC-\(\omega\)HPBE, and \(\omega\)-B97XD to explore the above cross-correlations on well-studied test subjects comprising of Anthracene, Tetracene, Phenanthrene and Pyrene in all possible combination of these functionals. The combined responses from the functionals have revealed that major inconsistency operating between structure and energy dictates the variations in the dipolar strength and that lower RMSD and higher charge reorganization are the keys to higher dipolar strength. While LC-\(\omega\)HPBE stands out, CAM-B3LYP and \(\omega\)B97XD remain comparatively more like each other except in the Adiabatic Energy Difference (AED) trend.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Engel E and Dreizler R M 2011 In Density Functional Theory: An Advanced Course (Springer: Berlin Heidelberg)

    Book  Google Scholar 

  2. Sousa S F, Fernandes P A and Ramos M J 2007 General Performance of Density Functionals J. Phys. Chem. A 111 10439

    Article  CAS  PubMed  Google Scholar 

  3. Kudin K N, Scuseria G E and Cancès E 2002 A black-box self-consistent field convergence algorithm: One step closer J. Chem. Phys. 116 8255

    Article  CAS  Google Scholar 

  4. Migliore A 2019 How To Extract Quantitative Information on Electronic Transitions from the Density Functional Theory Black Box J. Chem. Theory Comput. 15 4915

    Article  CAS  PubMed  Google Scholar 

  5. Pereira R W and Ramabhadran R O 2020 pK-Yay: A Black-Box Method Using Density Functional Theory and Implicit Solvation Models to Compute Aqueous pKa Values of Weak and Strong Acids J. Phys. Chem. A 124 9061

    Article  CAS  PubMed  Google Scholar 

  6. Schirmer J and Dreuw A 2007 Critique of the foundations of time-dependent density-functional theory Phys. Rev. A 75 022513

    Article  Google Scholar 

  7. Cohen A J, Mori-Sánchez P and Yang W 2012 Challenges for Density Functional Theory Chem. Rev. 112 289

    Article  CAS  PubMed  Google Scholar 

  8. Burke K 2012 Perspective on density functional theory J. Chem. Phys. 136 150901

    Article  PubMed  Google Scholar 

  9. Gould T and Dale S G 2022 Poisoning density functional theory with benchmark sets of difficult systems Phys. Chem. Chem. Phys. 24 6398

    Article  CAS  PubMed  Google Scholar 

  10. Hancock A C and Goerigk L 2022 Noncovalently bound excited-state dimers: a perspective on current time-dependent density functional theory approaches applied to aromatic excimer models RSC Adv. 12 13014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maitra N T 2022 Double and Charge-Transfer Excitations in Time-Dependent Density Functional Theory Annu. Rev. Phys. Chem. 73 117

    Article  CAS  PubMed  Google Scholar 

  12. Bogojeski M, Vogt-Maranto L, Tuckerman M E, Müller K R and Burke K 2020 Quantum chemical accuracy from density functional approximations via machine learning Nat. Commun. 11 5223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Verma P and Truhler D G 2020 Status and Challenges of Density Functional Theory Trends Chem. 2 302

    Article  CAS  Google Scholar 

  14. Johannes G, Jonathan S, Matthew J P H, Wetherell J, Benavides-Riveros C L and Marques M A L 2021 Machine learning the derivative discontinuity of density-functional theory Mach. Learn. Sci. Technol. 3 015011

    Google Scholar 

  15. Becke A D 1993 Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  16. Becke A D 1993 A new mixing of Hartree-Fock and local density-functional theories J. Chem. Phys. 98 1372

    Article  CAS  Google Scholar 

  17. Karton A and Spackman P R 2021 Evaluation of density functional theory for a large and diverse set of organic and inorganic equilibrium structures J. Comput. Chem. 42 1590

    Article  CAS  PubMed  Google Scholar 

  18. Sun Y, Lianrui H and Chen H 2015 Comparative Assessment of DFT Performances in Ru- and Rh-Promoted \(\sigma\)-Bond Activations J. Chem. Theory Comput. 11 1428

    Article  CAS  PubMed  Google Scholar 

  19. Perdew J P, Ruzsinszky A, Tao J, Staroverov V N, Scuseria G E and Csonka G I 2005 Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits J. Chem. Phys. 123 062201

    Article  Google Scholar 

  20. Becke A D 2014 Perspective: Fifty years of density-functional theory in chemical physics J. Chem. Phys. 140 18A301

    Article  PubMed  Google Scholar 

  21. Perdew J P and Schmidt K 2001 Jacob’s ladder of density functional approximations for the exchange-correlation energy AIP Conf. Proc. 577 1

    Article  CAS  Google Scholar 

  22. Alipour M and Karimi N 2021 Spin-Opposite-Scaled Range-Separated Exchange Double-Hybrid Models (SOS-RSX-DHs): Marriage Between DH and RSX/SOS-RSX Is Not Always a Happy Match J. Chem. Theory Comput. 17 4077

    Article  CAS  PubMed  Google Scholar 

  23. Najibi A, Casanova P M and Goerigk L 2021 Analysis of Recent BLYP- and PBE-Based Range-Separated Double-Hybrid Density Functional Approximations for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions J. Phys. Chem. A 125 4026

    Article  CAS  PubMed  Google Scholar 

  24. Zhao Y, Lynch B J and Truhlar D G 2005 Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics Phys. Chem. Chem. Phys. 7 43

    Article  CAS  Google Scholar 

  25. Goerigk L and Grimme S 2011 A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions Phys. Chem. Chem. Phys. 13 6670

    Article  CAS  PubMed  Google Scholar 

  26. Demeter T and Athanassios A T 2010 Mind the basis set superposition error Chem. Phys. Lett. 496 42

    Article  Google Scholar 

  27. Mourik T V, Wilson A K, Peterson K A, Woon D E and Dunning T H 1998 The Effect of Basis Set Superposition Error (BSSE) on the Convergence of Molecular Properties Calculated with the Correlation Consistent Basis Sets Adv. Quant. Chem. 31 105

  28. Rohrdanz M A, Herbert J M 2008 Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory J. Chem. Phys. 129 034107

    Article  PubMed  Google Scholar 

  29. Silva-Junior M R, Schreiber M, Sauer S P A and Thiel W 2008 Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction J. Chem. Phys. 129 104103

    Article  PubMed  Google Scholar 

  30. Silva-Junior M R, Schreiber M, Sauer S P A and Thiel W 2010 Benchmarks of electronically excited states: Basis set effects on CASPT2 results J. Chem. Phys. 133 174318

    Article  PubMed  Google Scholar 

  31. Peach M J G, Benfield P, Helgaker T and Tozer D J 2008 Excitation energies in density functional theory: An evaluation and a diagnostic test J. Chem. Phys. 128 044118

    Article  PubMed  Google Scholar 

  32. Nguyen K A, Day P N and Pachter R 2011 The performance and relationship among range-separated schemes for density functional theory J. Chem. Phys. 135 074109

    Article  PubMed  Google Scholar 

  33. Caricato M, Trucks G W, Frisch M J and Wiberg K B 2010 Electronic Transition Energies: A Study of the Performance of a Large Range of Single Reference Density Functional and Wave Function Methods on Valence and Rydberg States Compared to Experiment J. Chem. Theory Comput. 6 370

    Article  CAS  PubMed  Google Scholar 

  34. Leang S S, Zahariev F and Gordon M S 2012 Benchmarking the performance of time-dependent density functional methods J. Chem. Phys. 136 104101

    Article  PubMed  Google Scholar 

  35. Isegawa M, Peverati R and Truhlar D G 2012 Performance of recent and high-performance approximate density functionals for time-dependent density functional theory calculations of valence and Rydberg electronic transition energies J. Chem. Phys. 137 244104

    Article  PubMed  Google Scholar 

  36. Zhao Y and Truhlar D G 2008 Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions J. Chem. Theory Comput. 4 1849

    Article  CAS  PubMed  Google Scholar 

  37. Rohrdanz M A, Martins K M and Herbert J M 2009 A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states J. Chem. Phys. 130 054112

    Article  PubMed  Google Scholar 

  38. Guido C A, Knecht S, Kongsted J and Mennucci B 2013 Benchmarking Time-Dependent Density Functional Theory for Excited State Geometries of Organic Molecules in Gas-Phase and in Solution J. Chem. Theory Comput. 9 2209

    Article  CAS  PubMed  Google Scholar 

  39. Iikura H, Tsuneda T, Yanai T and Kimihiko H 2001 A long-range correction scheme for generalized-gradient-approximation exchange functionals J. Chem. Phys. 115 3540

    Article  CAS  Google Scholar 

  40. Zeng W, Gong S, Zhong C and Yang C 2019 Prediction of Oscillator Strength and Transition Dipole Moments with the Nuclear Ensemble Approach for Thermally Activated Delayed Fluorescence Emitters J. Phys. Chem. C 123 10081

    Article  CAS  Google Scholar 

  41. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Young D W, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. J A, Peralta E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J 2016 Gaussian 16 Revision B.01

  42. Tian L and Feiwu 2012 Multiwfn: A multifunctional wavefunction analyzer J. Chem. Phys. 33 580

    Google Scholar 

  43. Yoshihiro T, Takao T, Susumu Y, Takeshi Y and Kimihiko H 2004 A long-range-corrected time-dependent density functional theory J. Chem. Phys. 120 8425

    Article  Google Scholar 

  44. Gonthier J F, Steinmann S N, Roch L, Ruggi A, Luisier N, Severin K and Corminboeuf C 2012 \(\pi\)-Depletion as a criterion to predict \(\pi\)-stacking ability Chem. Commun. 48 9239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Madras Rubber Factory (MRF), Chennai, India for the financial support to establish the infrastructure. We are grateful to Prof. N Chandrakumar for his critical comments and insightful discussions during this manuscript preparation. SD thanks IIT MADRAS for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archita Patnaik.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1700 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S., Patnaik, A. Inconsistency between molecular structure and energy affecting the dipolar strength between electronic states: a probe into unique inter functional correlations among CAM-B3LYP, LC-\(\omega\)HPBE, \(\omega\)-B97XD functionals. J Chem Sci 136, 26 (2024). https://doi.org/10.1007/s12039-024-02255-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-024-02255-9

Keywords

Navigation